Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
This textbook presents a concise comparison of catalytic and biocatalytic systems outlining their catalytic properties and peculiarities. Moreover, it presents a brief introduction to the science of catalysis and attempts to unify different catalytic systems into a single, conceptually coherent structure. In fact, molecular dynamics and complexity may occur in both catalysts and biocatalysts, with many similarities in both their structural configuration and operational mechanisms. Moreover, the interactions between the different components of the catalytic system that are important in defining the overall activity, including the nature of active sites are discussed. Each chapter includes end of chapter questions supported by an online instructor solution manual. This textbook will be useful for undergraduate and graduate chemistry and biochemistry students.
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
This textbook presents a concise comparison of catalytic and biocatalytic systems outlining their catalytic properties and peculiarities. Moreover, it presents a brief introduction to the science of catalysis and attempts to unify different catalytic systems into a single, conceptually coherent structure. In fact, molecular dynamics and complexity may occur in both catalysts and biocatalysts, with many similarities in both their structural configuration and operational mechanisms. Moreover, the interactions between the different components of the catalytic system that are important in defining the overall activity, including the nature of active sites are discussed. Each chapter includes end of chapter questions supported by an online instructor solution manual. This textbook will be useful for undergraduate and graduate chemistry and biochemistry students.
Lactose-Derived Prebiotics: A Process Perspective is the first scientific reference to provide a comprehensive technological overview of the processes to derive oligosaccharides from dairy for use in functional foods. With their combined 90+ years in industry and research, the authors present the functional properties of prebiotics derived from lactose and the production technology required to make them. The book focuses on process engineering and includes an overview of green chemistry processes involving enzyme biocatalysis, providing detailed coverage of the use of whey lactose as raw material for producing oligosaccharides. The book's focus on processes and products allows the reader to understand the constraints and impacts of technology on lactose-derived prebiotics.
|
You may like...
|