Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.
This book is a collection of the papers presented at the workshop on "Symmetry and Heterogeneity in High Tc Superconductors" directed by Antonio Bianconi and Alexander F. Andreev in collaboration with K. Alex Muller and Giorgio Benedek. Philip B. Allen, Neil W. Ashcroft, Alan R. Bishop, J. C. Seamus Davis, Takeshi Egami, Francesco Iachello, David Pines, Shin-ichi Uchida, Subodh R. Shenoy, chaired hot sessione contributing to the success of the workshop. The object of the workshop was the quantum mechanism that allows the macroscopic quantum coherence of a superconducting condensate to resist to the attacks of high temperature. Solution to this problem of fundamental physics is needed for the design of room temperature superconductors, for controlling the decoherence effects in the quantum computers and for the understanding of a possible role of quantum coherence in living matter that is debated today in quantum biophysics. The discussions in the informal and friendly atmosphere of Erice was on new experimental data showing that high T in doped cuprate perovskites is c related with the nanoscale phase separation and the two component scenario, the two-band superconductivity in magnesium diboride and the lower symmetry in the superconducting elements at high pressure."
This book is a collection of papers in the field of stripes and high Tc superconductivity. The most relevant theoretical and experimental contributions from experts in the field of stripes, presented at the Second International Conference on Stripes and High Tc Superconductivity, are selected for publication. The book includes contributions on other stripe phases observed in manganites, nikelates, spin ladders, and heterostructures. Since a large stream of research in a growing community is converging towards the stripe scenario, this book serves as an important reference in the field of striped phases and high Tc superconductivity. The problem of high Tc superconductors has been a central issue in solid-state physics since 1987. After the discovery of high Tc superconductivity (HTSC) in doped perovskites, it was realized that HTSC appears in an unknown complex electronic phase of condensed matter. In the early years, all theories of HTSC were focused on the physics of a homogeneous 2D metal with large electron-electron correlations or on a 2D polaron gas. Only after 1990 a novel paradigm started to emerge in which this 2D metallic phase is described as an inhomogeneous metal. This was the outcome of several experimental evidences of phase separation at low doping. Following the discovery by the Rome Group in 1992 that the changes move freely mainly in one direction like the water running in the grooves in corrugated iron foil', a new scenario for understanding superconductivity in high Tc superconductors was opened. Since the charges move like rivers, the physics of these materials shifts towards the physics of novel mesoscopic heterostructures and complex electronic solids. Therefore, understanding the striped phases in the perovskites not only provides an opportunity to understand the anomalous metallic state of cuprate superconductors, but also suggests a way to design new materials of technological importance. The stripes are begetting a field of general scientific interest.
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.
This book is a collection of papers in the field of stripes and high Tc superconductivity. The most relevant theoretical and experimental contributions from experts in the field of stripes, presented at the Second International Conference on Stripes and High Tc Superconductivity, are selected for publication. The book includes contributions on other stripe phases observed in manganites, nikelates, spin ladders, and heterostructures. Since a large stream of research in a growing community is converging towards the stripe scenario, this book serves as an important reference in the field of striped phases and high Tc superconductivity. The problem of high Tc superconductors has been a central issue in solid-state physics since 1987. After the discovery of high Tc superconductivity (HTSC) in doped perovskites, it was realized that HTSC appears in an unknown complex electronic phase of condensed matter. In the early years, all theories of HTSC were focused on the physics of a homogeneous 2D metal with large electron-electron correlations or on a 2D polaron gas.Only after 1990 a novel paradigm started to emerge in which this 2D metallic phase is described as an inhomogeneous metal. This was the outcome of several experimental evidences of phase separation at low doping. Following the discovery by the Rome Group in 1992 that 'the changes move freely mainly in one direction like the water running in the grooves in corrugated iron foil', a new scenario for understanding superconductivity in high Tc superconductors was opened. Since the charges move like rivers, the physics of these materials shifts towards the physics of novel mesoscopic heterostructures and complex electronic solids. Therefore, understanding the striped phases in the perovskites not only provides an opportunity to understand the anomalous metallic state of cuprate superconductors, but also suggests a way to design new materials of technological importance. The stripes are begetting a field of general scientific interest.
This book the second volume in the "Springer Series in Biophysics" col lects together contributions to the conference on "Biophysics and Syn chrotron Radiation" held in July 86 at Frascati. This meeting addressed the advances on the structure of biological molecules obtained by using synchrotron radiation. In fact it was most timely to review the results of the research in biophysics which is rapidly developing at synchrotron radiation facilities. Moreover, there was interest to discuss the new perspectives opened up by the future high brilliance synchrotron radia tion sources. With the use of synchrotron radiation, x-ray spectroscopy of biological molecules is firmly established in the techniques of EXAFS and XANES. Contributions to the detailed knowledge of local structure of active sites of metalloproteins by this approach are presented in this volume, together with a number of studies of -the interaction of metal ions with other important biological macromolecular systems. Structural determination of very large biological systems at high reso lution, including a protein and its substrate, are reported. The experi mental advances in protein crystallography presented here reduce the time for solving protein structures, thus satisfying a major require ment of the rapidly-expanding field of protein engineering."
This book is a collection of the papers presented at the workshop on "Symmetry and Heterogeneity in High Tc Superconductors" directed by Antonio Bianconi and Alexander F. Andreev in collaboration with K. Alex Muller and Giorgio Benedek. Philip B. Allen, Neil W. Ashcroft, Alan R. Bishop, J. C. Seamus Davis, Takeshi Egami, Francesco Iachello, David Pines, Shin-ichi Uchida, Subodh R. Shenoy, chaired hot sessione contributing to the success of the workshop. The object of the workshop was the quantum mechanism that allows the macroscopic quantum coherence of a superconducting condensate to resist to the attacks of high temperature. Solution to this problem of fundamental physics is needed for the design of room temperature superconductors, for controlling the decoherence effects in the quantum computers and for the understanding of a possible role of quantum coherence in living matter that is debated today in quantum biophysics. The discussions in the informal and friendly atmosphere of Erice was on new experimental data showing that high T in doped cuprate perovskites is c related with the nanoscale phase separation and the two component scenario, the two-band superconductivity in magnesium diboride and the lower symmetry in the superconducting elements at high pressure."
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
The South African Keto & Intermittent…
Rita Venter, Natalie Lawson
Paperback
|