0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

On Exciton-Vibration and Exciton-Photon Interactions in Organic Semiconductors (Hardcover, 1st ed. 2021): Antonios M. Alvertis On Exciton-Vibration and Exciton-Photon Interactions in Organic Semiconductors (Hardcover, 1st ed. 2021)
Antonios M. Alvertis
R4,923 Discovery Miles 49 230 Ships in 12 - 19 working days

What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons', are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.

On Exciton-Vibration and Exciton-Photon Interactions in Organic Semiconductors (Paperback, 1st ed. 2021): Antonios M. Alvertis On Exciton-Vibration and Exciton-Photon Interactions in Organic Semiconductors (Paperback, 1st ed. 2021)
Antonios M. Alvertis
R5,065 Discovery Miles 50 650 Ships in 10 - 15 working days

What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons', are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Hudson River State Hospital
Joseph Galante, Lynn Rightmyer, … Paperback R587 R536 Discovery Miles 5 360
Return To The Wild
James Hendry Paperback  (3)
R340 R308 Discovery Miles 3 080
Dimensions Of Healthcare Management
Marhie Bezuidenhout Paperback  (1)
R668 R615 Discovery Miles 6 150
Conversations With A Gentle Soul
Ahmed Kathrada, Sahm Venter Paperback  (3)
R190 R173 Discovery Miles 1 730
What To Do When You Don't Know What To…
David Jeremiah Paperback  (2)
R403 R368 Discovery Miles 3 680
Healthcare Reflections, Insights, and…
Steven J Sobak Hardcover R1,011 Discovery Miles 10 110
Wireless Phones and Health - Scientific…
George L. Carlo Paperback R5,617 Discovery Miles 56 170
The Longest March
Fred Khumalo Paperback R280 R221 Discovery Miles 2 210
Managing and Supporting People in Health…
Julie Hyde, Michael J. Cook Paperback R930 Discovery Miles 9 300
The Schoolhouse
Sophie Ward Paperback R457 R414 Discovery Miles 4 140

 

Partners