![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Iron catalysts in organic synthesis are strongly in demand because iron is non-toxic, inexpensive and the most abundant transition metal in the earth, although their use is still limited compared with that of rare, precious metals such as palladium, ruthenium and rhodium. This thesis describes the first practical example of iron catalysis in the carbon hydrogen bond activation reaction to synthesized fused aromatic ring compounds. By using a unique combination of iron catalyst and dichloride oxidant, various kind of naphthalene and phenanthrene derivatives were synthesized via annulation reaction with alkynes including direct C H bond activation process. This achievement opens the new possibility of low-valent iron catalysis and expands synthetic methods for a sustainable society."
Iron catalysts in organic synthesis are strongly in demand because iron is non-toxic, inexpensive and the most abundant transition metal in the earth, although their use is still limited compared with that of rare, precious metals such as palladium, ruthenium and rhodium. This thesis describes the first practical example of iron catalysis in the carbon–hydrogen bond activation reaction to synthesized fused aromatic ring compounds. By using a unique combination of iron catalyst and dichloride oxidant, various kind of naphthalene and phenanthrene derivatives were synthesized via annulation reaction with alkynes including direct C–H bond activation process. This achievement opens the new possibility of low-valent iron catalysis and expands synthetic methods for a sustainable society.
Asymmetric autocatalysis is a reaction in which chiral compound acts as a chiral catalyst for its own production. The process is a catalytic automultiplication of the chiral compound leading to an end product with a high enantiomeric excess. It has advantages over non-autocatalytic reactions because the amount of catalyst increases and no loss or deterioration of the catalyst is observed. Additionally, because the catalyst and product have the same structure, the separation of product from the catalyst is not necessary. Asymmetric Autocatalysis provides a comprehensive introduction to the topic of autocatalysis and an in-depth review of the current state of the research. Edited by a team including Professor Kenso Soai, who first described these types of reaction, and written by experts from around the world this book is a great resource for anyone with an interest in organic synthesis, catalysis and chirality.
|
![]() ![]() You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
|