Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
to Soil Dynamics Arnold Verruijt Delft University of Technology, Delft, The Netherlands Arnold Verruijt Delft University of Technology 2628 CN Delft Netherlands [email protected] A CD-ROM accompanies this book containing programs for waves in piles, propagation of earthquakes in soils, waves in a half space generated by a line load, a point load, a strip load, or a moving load, and the propagation of a shock wave in a saturated elastic porous material. Computer programs are also available from the website http://geo.verruijt.net ISBN 978-90-481-3440-3 e-ISBN 978-90-481-3441-0 DOI 10.1007/978-90-481-3441-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009940507 (c) Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, micro?lming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied speci?cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This book gives the material for an introductory course on Soil Dynamics, as given for about 10 years at the Delft University of Technology for students of civil en- neering, and updated continuously since 1994.
This book contains an overview of the most relevant scientific contributions of Gerard de Josselin de Jong to the development of both Soil Mechanics and Transport in Porous Media. The volume comprises a selection of papers by de Josselin de Jong as they were published in the international scientific literature. In addition, some unpublished, but highly relevant work has been included. Most of the papers by de Josselin de Jong are concerned with issues related to soil mechanics. This is not surprising, considering the fact that he worked at Delft Soil Mechanics Laboratory and given the nature of his chair at Delft University of Technology. But occasionally he made an excursion to the area of flow and transport in porous media. It characterizes his ingenuity that most of these excursions led to papers that are now classics in the field. The editors have chosen to divide his key publications into a group devoted to soil mechanics and a group devoted to flow and transport in porous media. The selected papers were published in the period 1950-1990. They clearly demonstrate the development of ideas and the profound contributions of de Josselin de Jong. Each paper is a jewel on its own. He has an extremely original way of reasoning and he illustrated intricate concepts and mechanisms with the aid of his famous hand-made drawings. In particular young scientists will enjoy reading these papers because important parts of today's porous media research find their roots in them, and because many questions raised by de Josselin de Jong are still open and subject to current investigations.
Recent years have witnessed the development of computational geomechanics as an important branch of engineering. The use of modern computational techniques makes it possible to deal with many complex engineering problems, taking into account many of the typical properties of geotechnical materials (soil and rock), such as the coupled behaviour of pore water and solid material, nonlinear elasto-plastic behaviour, and transport processes. This book provides an introduction to these methods, presenting the basic principles of the geotechnical phenomena involved as well as the numerical models for their analysis, and including full listings of computer programs (in PASCAL). The types of geotechnical problems considered cover a wide range of applications, varying from classical problems such as slope stability, analysis of foundation piles and sheet pile walls to finite element analysis of groundwater flow, elasto-plastic deformations, consolidation and transport problems.
Recent years have witnessed the development of computational geomechanics as an important branch of engineering. The use of modern computational techniques makes it possible to deal with many complex engineering problems, taking into account many of the typical properties of geotechnical materials (soil and rock), such as the coupled behaviour of pore water and solid material, nonlinear elasto-plastic behaviour, and transport processes. This book provides an introduction to these methods, presenting the basic principles of the geotechnical phenomena involved as well as the numerical models for their analysis, and including full listings of computer programs (in PASCAL). The types of geotechnical problems considered cover a wide range of applications, varying from classical problems such as slope stability, analysis of foundation piles and sheet pile walls to finite element analysis of groundwater flow, elasto-plastic deformations, consolidation and transport problems.
Groundwater constitutes an important component of many water resource systems, supplying water for domestic use, for industry, and for agriculture. Management of a groundwater system, an aquifer, or a system of aquifers, means making such decisions as to the total quantity of water to be withdrawn annually, the location of wells for pumping and for artificial recharge and their rates, and control conditions at aquifer boundaries. Not less important are decisions related to groundwater qUality. In fact, the quantity and quality problems cannot be separated. In many parts of the world, with the increased withdrawal of ground water, often beyond permissible limits, the quality of groundwater has been continuously deteriorating, causing much concern to both suppliers and users. In recent years, in addition to general groundwater quality aspects, public attention has been focused on groundwater contamination by hazardous industrial wastes, by leachate from landfills, by oil spills, and by agricultural activities such as the use of fertilizers, pesticides, and herbicides, and by radioactive waste in repositories located in deep geological formations, to mention some of the most acute contamination sources. In all these cases, management means making decisions to achieve goals without violating specified constraints. In order to enable the planner, or the decision maker, to compare alternative modes of action and to ensure that the constraints are not violated, a tool is needed that will provide information about the response of the system (the aquifer) to various alternatives."
|
You may like...
Wanted Dead & Alive - The Case For South…
Gregory Mthembu-Salter
Paperback
Research in Education: Evidence-Based…
James McMillan, Sally Schumacher
Paperback
(4)
R2,039 Discovery Miles 20 390
The Data Game - Controversies in Social…
Mark H. Maier, Jennifer Imazeki
Paperback
R880
Discovery Miles 8 800
Food Studies - An Introduction to…
Jeff Miller, Jonathan Deutsch
Hardcover
R3,709
Discovery Miles 37 090
Flight Of The Diamond Smugglers - A Tale…
Matthew Gavin Frank
Paperback
|