Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 82 matches in All Departments
The field of Binaural Hearing involves studies of auditory perception, physiology, and modeling, including normal and abnormal aspects of the system. Binaural processes involved in both sound localization and speech unmasking have gained a broader interest and have received growing attention in the published literature. The field has undergone some significant changes. There is now a much richer understanding of the many aspects that comprising binaural processing, its role in development, and in success and limitations of hearing-aid and cochlear-implant users. The goal of this volume is to provide an up-to-date reference on the developments and novel ideas in the field of binaural hearing. The primary readership for the volume is expected to be academic specialists in the diverse fields that connect with psychoacoustics, neuroscience, engineering, psychology, audiology, and cochlear implants. This volume will serve as an important resource by way of introduction to the field, in particular for graduate students, postdoctoral scholars, the faculty who train them and clinicians.
Since the first edition of the Aging Auditory System volume (in 2009), there has been a tremendous amount of research in basic, translational, and clinical sciences related to age-related changes in auditory system structure and function. The new research has been driven by technical and conceptual advances in auditory neuroscience at multiple levels ranging from cells to cognition. The chapters in Aging and Hearing: Causes and Consequences span a broad range of topics and appeal to a relatively wide audience. Our goal in this volume is to put together state-of-the-art discussions about new developments in aging research that will appeal to a broad audience, serving as an important update on the current state of research on the aging auditory system. This update includes not only the recent research, but also consideration of how human and animal studies or translational and basic research are working in tandem to advance the field. This new edition is a natural complement to the previous SHAR volume on the aging auditory system edited by Gordon-Salant, Frisina, Popper, and Fay. The target audience for this volume will be graduate students, researchers, and academic faculty from a range of disciplines (psychology, hearing science/audiology, physiology, neuroscience, engineering). It also will appeal to clinical audiologists as well as to researchers working in the hearing device industry. Individuals who attend conferences sponsored by the Association for Research in Otolaryngology, Acoustical Society of America, Auditory Cognitive Neuroscience Society, American Auditory Society, Society for Neuroscience, American Speech, Language and Hearing Association, and the American Academy of Audiology (among others) are likely to find value in the volume.
By far, the most widely used subjects in psychological and biological research today are rodents. Although rats and mice comprise the largest group of animals used in research, there are over 2,000 species and 27 families of rodents, living all over the world (except Antarctica) and thriving in many different habitat types. The vast environmental diversity that rodents face has led to numerous adaptations for communication, including vocalizing and hearing in both the sonic and ultrasonic ranges, effectively communicating in the open air and underground, and using vocalizations for coordinating sexual behavior, for mother-pup interactions, and for signaling an alarming situation to the group. Some rodent species have even developed foot drumming behaviors for communication. Comparative studies from around the globe, using both field and laboratory methodologies, reveal the vast differences in acoustic communication behavior across many rodent species. Some rodents are amenable to training and have been domesticated and bred purely for research purposes. Since the early 1900s, rats and mice have been indispensable to research programs around the world. Thus, much of what we know about hearing and vocalizations in rodents come from these two species tested in the laboratory. The sequencing of the mouse genome in 2002, followed by the rat genome in 2004, only increased the utility of these animals as research subjects since genetically engineered strains mimicking human diseases and disorders could be developed more easily. In the laboratory, rats and mice are used as models for human communication and hearing disorders and are involved in studies on hearing loss and prevention, hormones, and auditory plasticity, to name a few. We know that certain strains of mice retain hearing better than others throughout their lifespan, and about the genes involved in those differences. We know about the effects of noise, hormones, sex, aging, and circadian rhythms on hearing in mice and other rodents. We also know about normal hearing in many families of rodents, including the perception of simple and complex stimuli and the anatomy and physiology of hearing and sound localization. The importance of acoustic communication to these animals, as well as the significance of these mammals to biomedical research, are summarized in the chapters.
Over the past several years, many investigators interested in the effects of man-made sounds on animals have come to realize that there is much to gain from studying the broader literature on hearing sound and the effects of sound as well as data from the effects on humans. It has also become clear that knowledge of the effects of sound on one group of animals (e.g., birds or frogs) can guide studies on other groups (e.g., marine mammals or fishes) and that a review of all such studies together would be very useful to get a better understanding of the general principles and underlying cochlear and cognitive mechanisms that explain damage, disturbance, and deterrence across taxa. The purpose of this volume, then, is to provide a comprehensive review of the effects of man-made sounds on animals, with the goal of fulfilling two major needs. First, it was thought to be important to bring together data on sound and bioacoustics that have implications across all taxa (including humans) so that such information is generally available to the community of scholars interested in the effects of sound. This is done in Chaps. 2-5. Second, in Chaps. 6-10, the volume brings together what is known about the effects of sound on diverse vertebrate taxa so that investigators with interests in specific groups can learn from the data and experimental approaches from other species. Put another way, having an overview of the similarities and discrepancies among various animal groups and insight into the "how and why" will benefit the overall conceptual understanding, applications in society, and all future research.
This book reviews the growing literature that is consistent with the hypothesis that hormones can regulate auditory physiology and perception across a broad range of animal taxa, including humans. Understanding how hormones modulate auditory function has far reaching implications for advancing our knowledge in the basic biomedical sciences and in understanding the evolution of acoustic communication systems. A fundamental goal of neuroscience is to understand how hormones modulate neural circuits and behavior. For example, steroids such as estrogens and androgens are well-known regulators of vocal motor behaviors used during social acoustic communication. Recent studies have shown that these same hormones can also greatly influence the reception of social acoustic signals, leading to the more efficient exchange of acoustic information.
Presents a comprehensive review of nonhuman primate audition and vocal communication. These are obviously intimately related topics, but are often addressed separately. The hearing abilities of primates have been tested experimentally in a large number of species across the primate order, and these studies have revealed both consistent patterns as well as interesting variation within and between taxonomic groups. Recent studies have shed light on how variation in anatomical structures along the auditory pathway relates to variation in auditory sensitivity. At the same time, ongoing studies of vocal communication in wild primate populations continue to reveal new insights into the social and environmental contexts of many primate calls, and the range of known primate vocalizations has increased dramatically with the development of more sophisticated and accessible auditory equipment and software that enables the recording and analysis of higher-fidelity and broader-band recordings, including documenting very high frequency (i.e. ultrasound) vocalizations. Historically the relative importance of primate calls has been evaluated qualitatively by the perception of the researcher, but new methods and approaches now enable a greater appreciation for how signals are used and perceived by the primates in question. The integration of anatomical and behavioral data on acoustic communication and the environmental correlates thereof has significant potential for reconstructing behavior in the fossil record. This confluence of factors and accumulating evidence for the sophistication and complexity in both the signal and its interpretation indicate that a book synthesizing this information across primates is warranted and represents an important contribution to the literature.
Insect Hearing provides a broadly based view of the functions, mechanisms, and evolution of hearing in insects. With a single exception, the chapters focus on problems of hearing and their solutions, rather than being focused on particular taxa. The exception, hearing in Drosophila, is justified because, due to its ever growing toolbox of genetic and optical techniques, Drosophila is rapidly becoming one of the most important model systems in neurobiology, including the neurobiology of hearing. Auditory systems, whether insectan or vertebrate, must perform a number of basic tasks: capturing mechanical stimuli and transducing these into neural activity, representing the timing and frequency of sound signals, distinguishing between behaviorally relevant signals and other sounds and localizing sound sources. Studying how these are accomplished in insects offers a valuable comparative view that helps to reveal general principles of auditory function.
This SHAR volume serves to expand, supplement, and update the original "Cochlea" volume in the series. The book aims to highlight the power of diverse modern approaches in cochlear research by focusing on advances in those fields over the last two decades. It also provides insights into where cochlear research is going, including new hearing prostheses for the deaf that will most likely soon enter the phase of clinical trials. The book will appeal to a broad, interdisciplinary readership, including neuroscientists and clinicians in addition to the more specific auditory community.
The middle ear plays a vital role in the sense and sensitivity of hearing. Of the various characteristics that distinguish mammals from other vertebrates, several pertain specifically to the middle-ear system, such as the presence of three middle-ear bones and the four-layer composite structure of the tympanic membrane. The Middle Ear attempts to elucidate the role this system plays in sound transmission, as viewed from both scientific and clinical perspectives.
The Auditory System at the Cocktail Party is a rather whimsical title that points to the very serious challenge faced by listeners in most everyday environments: how to hear out sounds of interest amid a cacophony of competing sounds. The volume presents the mechanisms for bottom-up object formation and top-down object selection that the auditory system employs to meet that challenge. Ear and Brain Mechanisms for Parsing the Auditory Scene by John C. Middlebrooks and Jonathan Z. Simon Auditory Object Formation and Selection by Barbara Shinn-Cunningham, Virginia Best, and Adrian K. C. Lee Energetic Masking and Masking Release by John F. Culling and Michael A. Stone Informational Masking in Speech Recognition by Gerald Kidd, Jr. and H. Steven Colburn Modeling the Cocktail Party Problem by Mounya Elhilali Spatial Stream Segregation by John C. Middlebrooks Human Auditory Neuroscience and the Cocktail Party Problem by Jonathan Z. Simon Infants and Children at the Cocktail Party by Lynne Werner Older Adults at the Cocktail Party by M. Kathleen Pichora-Fuller, Claude Alain, and Bruce A. Schneider Hearing with Cochlear Implants and Hearing Aids in Complex Auditory Scenes by Ruth Y. Litovsky, Matthew J. Goupell, Sara M. Misurelli, and Alan Kan About the Editors: John C. Middlebrooks is a Professor in the Department of Otolaryngology at the University of California, Irvine, with affiliate appointments in the Department of Neurobiology and Behavior, the Department of Cognitive Sciences, and the Department of Biomedical Engineering. Jonathan Z. Simon is a Professor at the University of Maryland, College Park, with joint appointments in the Department of Electrical and Computer Engineering, the Department of Biology, and the Institute for Systems Research. Arthur N. Popper is Professor Emeritus and Research Professor in the Department of Biology at the University of Maryland, College Park. Richard R. Fay is Distinguished Research Professor of Psychology at Loyola University, Chicago. About the Series: The Springer Handbook of Auditory Research presents a series of synthetic reviews of fundamental topics dealing with auditory systems. Each volume is independent and authoritative; taken as a set, this series is the definitive resource in the field.
The evolution of vertebrate hearing is of considerable interest in the hearing community. However, there has never been a volume that has focused on the paleontological evidence for the evolution of hearing and the ear, especially from the perspective of some of the leading paleontologists and evolutionary biologists in the world. Thus, this volume is totally unique, and takes a perspective that has never been taken before. It brings to the fore some of the most recent discoveries among fossil taxa, which have demonstrated the sort of detailed information that can be derived from the fossil record, illuminating the evolutionary pathways this sensory system has taken and the diversity it had achieved.
The hearing organs of non-mammals, which show quite large and systematic differences to each other and to those of mammals, provide an invaluable basis for comparisons of structure and function. By taking advantage of the vast diversity of possible study organisms provided by the "library" that is biological diversity, it is possible to learn how complex functions are realized in the inner ear through the evolution of specific structural, cellular and molecular configurations. Insights from Comparative Hearing Research brings together some of the most exciting comparative research on hearing and shows how this work has profoundly impacted our understanding of hearing in all vertebrates.
This volume brings together noted scientists who study presbycusis from the perspective of complementary disciplines, for a review of the current state of knowledge on the aging auditory system. Age-related hearing loss (ARHL) is one of the top three most common chronic health conditions affecting individuals aged 65 years and older. The high prevalence of age-related hearing loss compels audiologists, otolaryngologists, and auditory neuroscientists alike to understand the neural, genetic and molecular mechanisms underlying this disorder. A comprehensive understanding of these factors is needed so that effective prevention, intervention, and rehabilitative strategies can be developed to ameliorate the myriad of behavioral manifestations. The aim is to provide students and researchers in auditory science and aging with a understanding of the various effects of aging on the auditory system. Contents:
Sandra Gordon-Salant is Professor and Director of the Doctoral Program in Clinical Audiology in the Department of Hearing and Speech Sciences at the University of Maryland, College Park. Robert D. Frisina is Professor of Otolaryngology, Neurobiology & Anatomy, and Biomedical Engineering, and Associate Chair of Otolaryngology at the University of Rochester Medical School. Arthur N. Popper is Professor in the Department of Biology and Co-Director of the Center for Comparative and Evolutionary Biology of Hearing at the University of Maryland, College Park. Richard R. Fay is Director of the Parmly Hearing Institute and Professor of Psychology at Loyola University of Chicago. About the series: The Springer Handbook of Auditory Research presents a series of synthetic reviews of fundamental topics dealing with auditory systems. Each volume is independent and authoritative; taken as a set, this series is the definitive resource in the field.
Translational Research is the interface between basic science and human clinical application, including the entire process from animal studies to human clinical trials (phases I, II, and III). Translational Research moves promising basic science results from the laboratory to bedside application. Yet, this transition is often the least-defined, least-understood part of the research process. Most scientific training programs provide little or no systematic introduction to the issues, challenges, and obstacles that prevent effective research translation, even though these are the key steps that enable high-impact basic science to ultimately result in significant clinical advances that improve patient outcome. This volume will provide an overview of key issues in translation of research from "bedside to bench to bedside", not only from the perspective of the key funding agencies, but also from the scientists and clinicians who are currently involved in the translational research process. It will attempt to offer insight into real-world experience with intellectual property and technology transfer activities that can help move auditory technologies ahead, as scientists and clinicians typically have little or no formal training in these areas. Translational Research in Audiology and the Hearing Sciences will be aimed at graduate students and postdoctoral investigators, as well as professionals and academics. It is intended to function as a high-profile and up-to-date reference work on Translational Research in the auditory sciences, emphasizing research programs in the traditional areas including drugs and devices, as well as less traditional, still emerging, areas such as sensorineural hearing loss, auditory processing disorder, cochlear implants and hearing aids, and tinnitus therapies.
This volume will cover a variety of topics, including child language development; hearing loss; listening in noise; statistical learning; poverty; auditory processing disorder; cochlear neuropathy; attention; and aging. It will appeal broadly to auditory scientists-and in fact, any scientist interested in the biology of human communication and learning. The range of the book highlights the interdisciplinary series of questions that are pursued using the auditory frequency-following response and will accordingly attract a wide and diverse readership, while remaining a lasting resource for the field.
Efferent sensory systems have emerged as major components of processing by the central nervous system. Whereas the afferent sensory systems bring environmental information into the brain, efferent systems function to monitor, sharpen, and attend selectively to certain stimuli while ignoring others. This ability of the brain to implement these functions enables the organism to make fine discriminations and to respond appropriately to environmental conditions so that survival is enhanced. Our focus will be on auditory and vestibular efferents, topics linked together by the inner ear connection. The biological utility of the efferent system is striking. How it functions is less well understood, and with each new discovery, more questions arise. The book that is proposed here reflects our vision to share what is known on the topic by authors who actually have made the observations.
The Springer Handbook of Auditory Research presents a series of comprehensive and synthetic reviews of the fundamental topics in modern auditory research. The v- umes are aimed at all individuals with interests in hearing research including advanced graduate students, post-doctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely. Each volume presents a particular topic comprehensively, and each serves as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in pe- reviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation rather than on those for which a literature is only beg- ning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.
"The Lateral Line System "provides an overview of the key concepts and issues surrounding the development, evolution, neurobiology, and function of the lateral line, a fascinating yet somewhat enigmatic flow-sensing system. The book examines the historical precedence for linking the auditory and lateral line systems, its structure and development, use of the lateral line system of zebrafish as a model system, physical principles governing the response properties of the lateral line, the behavioral relevance of this sensory system to the lives of fish, and an examination of how this information is shaped and encoded by the peripheral and central nervous systems. Contents The Gems of the Past: A Brief History of Lateral Line Research in the Context of the Hearing Sciences - Sheryl Coombs and Horst Bleckmann Morphological Diversity, Development, and Evolution of the Mechanosensory Lateral Line System - Jacqueline F. Webb The Hydrodynamic of Flow Stimuli - Matthew J. McHenry and James C. Liao The Biophysics of the Fish Lateral Line - Sietse M. van Netten and Matthew J. McHenry Sensory Ecology and Neuroethology of the Lateral Line - John Montgomery, Horst Bleckmann, and Sheryl Coombs Information Encoding and Processing by the Peripheral Lateral Line System - Boris Philippe Chagnaud and Sheryl Coombs The Central Nervous Organization of the Lateral Line System - Mario F. Wullimann and Benedikt Grothe Central Processing of Lateral Line Information - Horst Bleckmann and Joachim Mogdans Functional Overlap and Nonoverlap Between Lateral Line and Auditory Systems - Christopher B. Braun and Olav Sand The Hearing Loss, Protection, and Regeneration in the Larval Zebrafish Lateral Line- Allison B. Coffin, Heather Brignull, David W. Raible, and Edwin W Rubel"
Two groups of animals, bats and odontocetes (toothed whales), have independently developed the ability to orient and detect prey by biosonar (echolocation). This active mechanism of orientation allows these animals to operate under low light conditions. "Biosonar"is a conceptual overview of what is known about biosonar in bats and odontocetes. Chapters are written by bat and odontocetes experts, resulting in collaborations that not only examine data on both animals, but also compare and contrast mechanisms. This book provides a unique insight that will help improve our understanding of biosonar in both animal groups. "
This volume will serve as the first Handbook of its kind in the area of hearing aid research, often the least-defined, least-understood, part of the multi-disciplinary research process. Most scientific training is very advanced within the particular disciplines but provides little opportunity for systematic introduction to the issues and obstacles that prevent effective hearing-aid related research. This area has emerged as one of critical importance, as signified by a single specialized meeting (the International Hearing Aid Conference, IHCON) that brings together specialists from the disparate disciplines involved, including both university and industry researchers. Identification of the key steps that enable high-impact basic science to ultimately result in significant clinical advances that improve patient outcome is critical. This volume will provide an overview of current key issues in hearing aid research from the perspective of many different disciplines, not only from the perspective of the key funding agencies, but also from the scientists and clinicians who are currently involved in hearing aid research. It will offer insight into the experience, current technology and future technology that can help improve hearing aids, as scientists and clinicians typically have little or no formal training over the whole range of the individual disciplines that are relevant. The selection and coverage of topics insures that it will have lasting impact, well beyond immediate, short-term, or parochial concerns.
Hearing and communication present a variety of challenges to the nervous system. To be heard and understood, a communication signal must be transformed from a time-varying acoustic waveform to a perceptual representation to an even more abstract representation that integrates memory stores with semantic/referential information. Finally, this complex, abstract representation must be interpreted to form categorical decisions that guide behavior. Did I hear the stimulus? From where and whom did it come? What does it tell me? How can I use this information to plan an action? All of these issues and questions underlie auditory cognition. Since the early 1990s, there has been a re-birth of studies that test the neural correlates of auditory cognition with a unique emphasis on the use of awake, behaving animals as model. Continuing today, how and where in the brain neural correlates of auditory cognition are formed is an intensive and active area of research. Importantly, our understanding of the role that the cortex plays in hearing has the potential to impact the next generation of cochlear- and brainstem-auditory implants and consequently help those with hearing impairments. Thus, it is timely to produce a volume that brings together this exciting literature on the neural correlates of auditory cognition. This volume compliments and extends many recent SHAR volumes such as Sound Source Localization (2005) Auditory Perception of Sound Sources (2007), and Human Auditory Cortex (2010). For example, in many of these volumes, similar issues are discussed such as auditory-object identification and perception with different emphases: in Auditory Perception of Sound Sources, authors discuss the underlying psychophysics/behavior, whereas in the Human Auditory Cortex, fMRI data are presented. The unique contribution of the proposed volume is that the authors will integrate both of these factors to highlight the neural correlates of cognition/behavior. Moreover, unlike other these other volumes, the neurophysiological data will emphasize the exquisite spatial and temporal resolution of single-neuron as opposed to more coarse fMRI or MEG data] responses in order to reveal the elegant representations and computations used by the nervous system.
This volume presents a set of essays that discuss the development and plasticity of the vertebrate auditory system. The topic is one that has been considered before in the Springer Handbook of Auditory Research (volume 9 in 1998, and volume 23 in 2004) but the field has grown substantially and it is appropriate to bring previous material up to date to reflect the wealth of new data and to raise some entirely new topics. At the same time, this volume is also unique in that it is the outgrowth of a symposium honoring two-time SHAR co-editor Professor Edwin W Rubel on his retirement. The focus of this volume, though, is an integrated set of papers that reflect the immense contributions that Dr. Rubel has made to the field over his career. Thus, the volume concurrently presents a topic that is timely for SHAR, but which also honors the pioneer in the field. Each chapter explores development with consideration of plasticity and how it becomes limited over time. The editors have selected authors with professional, and often personal, connections to Dr. Rubel, though all are, in their own rights, outstanding scholars and leaders in their fields. The specific audience will be graduate students, postdoctoral fellows, and established psychologists and neuroscientists who are interested in auditory function, development, and plasticity. This volume will also be of interest to hearing scientists and to the broad neuroscience community because many of the ideas and principles associate with the auditory system are applicable to most sensory systems. The volume is organized to appeal to psychophysicists, neurophysiologists, anatomists, and systems neuroscientists who attend meetings such as those held by the Association for Research in Otolaryngology, the Acoustical Society of America, and the Society for Neuroscience.
This book considers deafness as a medical condition, exploring the neuronal consequences on the peripheral and the central nervous system as well as on cognition and learning, viewed from the standpoint of genetics, neuroanatomy and neurophysiology, molecular biology, systems neuroscience, and cognitive neuroscience.
Arguably biosonar is one of the 'eye-opening' discoveries about animal behavior and the auditory systems of echolocators are front and center in this story. Echolocation by bats has proven to be a virtual gold mine for colleagues studying neurobiology, while providing many rich examples of its impact on other areas of bats' lives. In this volume we briefly review the history of the topic (reminding readers of the 1995 Hearing by Bats). We use a chapter on new findings in the phylogeny of bats to put the information that follows in an evolutionary context. This includes an examination of the possible roles of Prestin and FoxP2 genes and various anatomical features affecting bat vocalizations. We introduce recent work on the role of noseleafs, ears, and other facial components on the focusing of sound and collection of echoes.
The concept of the “Soundscapes” includes all of the sounds in one’s environment and focuses not only on the sounds itself. Instead, it focuses on the interrelationships between person and activity and place, both in space and time. Soundscape also include influences on the acoustic environment through auditory sensation, its interpretation, and the responses to the acoustic environment in context. The conceptual framework of Soundscape describes the “process of perceiving or experiencing and/or understanding an acoustic environment, highlighting general concepts and their relationships: context, sound sources, acoustic environment, auditory sensation, interpretation of auditory sensation, responses, and outcomes” (International Organization for Standardization, ISO 12913-1:2014 Acoustics Soundscape Part Definition and Conceptual Framework, ISO, Geneva, 2014). With soundscape, one achieves a deeper understanding of acoustic environment and its effects on people. The ISO standard 12931-1 on soundscape provides an important, and rigorous, distinction in the use of “Soundscape.” But, it is recognizable that some individuals, particularly planners, designers, lay persons, and even those primarily interested in management of the acoustic environment through environmental noise control, will find it convenient to use “Soundscape” as a synonym for the physical acoustic environment. When it comes to noise management and urban planning, soundscape research has the potential to promote healthy urban environments by sharing and incorporating the significant knowledge of all concerned parties. Understandably, this shows that the communication with regard to noise management has to be forced to guarantee that the specifics of Soundscapes (i.e., the relevance of perception) are seriously considered alongside the whole. This book will bridge the gap between soundscape theory and practice and therefore it will be different from our earlier publications as “Soundscape and the built environment” (ed. by J. Kang and B. Schulte-Fortkamp CRC Press, Taylor and Francis Group, Boca Raton, Fl 2016) and also from the respective Special Issues on Soundscapes in 2012 in The Journal of the Acoustical Society of America (ed. by B. Schulte-Fortkamp and J. Kang), and also the Special Issue in Acta Acustica 2006 *(ed. by B. Schulte-Fortkamp and D. Dubois), and the E-book on soundscape This volume will be driven by the difficult process of standardization of Soundscape and its evaluation procedures. The main goal of the proposed volume is to present and review the developments in Soundscape, reflecting the standardization procedure and the diverse inputs. the needs in management and planning in urban acoustic environments, the book will also focus on the difficulties, as well as the solutions, in interdisciplinary grounded communication, that is, on the one hand, related to science, but on the other to application, that needs guidance. |
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
1 Recce: Volume 3 - Through Stealth Our…
Alexander Strachan
Paperback
Flight Of The Diamond Smugglers - A Tale…
Matthew Gavin Frank
Paperback
Herontdek Jou Selfvertroue - Sewe Stappe…
Rolene Strauss
Paperback
(1)
|