Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Employees of different labor sectors are involved in different projects and pressed to deliver results in a specific period of time, which increases their mental workload. This increase can lead to a high mental workload, which in turn leads to a decline in job performance. Therefore, strategies for managing mental workload and promoting mental health have become necessary for corporate success. Evaluating Mental Workload for Improved Workplace Performance is a critical scholarly book that provides comprehensive research on mental workload and the effects, both adverse and positive, that it can have on employee populations as well as strategies for decreasing or deleting it from the labor sector. Highlighting an array of topics such as psychosocial factors, critical success factors (CSF), and technostress, this book is ideal for academicians, researchers, managers, ergonomists, engineers, industrial designers, industry practitioners, and students.
This book covers supply chain and logistics, production and manufacturing systems as well as human factors. Topics such as applications to procurements from suppliers, suppliers developments and relationships with suppliers are reported. The techniques and tools applied to production processes, such as, machinery maintenance and quick changeover, are described in detail. The book also presents human factors as the main component in the industrial engineering field, reporting some successful teamwork organizations for improvements and applied ergonomics, among others.
This book reports the most recent, advanced, successful, and real applications of ergonomics in order to improve the human well-being and performance in a short term, as well as the organizational performance in a long term. The book is organized as follows: Physical Ergonomics. This section reports case studies where physical risk factors are presented in the workplace, such as physical risk factors including uncomfortable body postures, repetitive movements, force application, manual material handling, and physical environmental conditions. In addition, case studies must report applications from physical ergonomics methods, for instance, RULA, REBA, OWAS, NIOSH, JSI, Suzane Rodgers, ERIN, among others. Cognitive Ergonomics. This section reports the implementation of ergonomic tools, techniques, and methods in real case studies. These applications are aimed to know, decrease, and control cognitive and psychological risk factors, such as mental workload, information processing, situation awareness, human error identification, and interface analysis. These applications may include the following methods NASA-TLX, SWAT, CWA, SHERPA, HET, TAFEI, SAGAT, SART, SACRI, QUIS, SUMI, to mention a few of them. Macro-ergonomics. This section is focused on the analysis, design, and evaluation of work systems. It reports case studies where risk factors are beyond a specific workstation. These risk factors may include supervision styles, teamwork management, task variety, social relationships, organizational culture, organizational communication, technology, work schedules, and motivation, among others. In addition, case studies report the application of macro-ergonomic methods, such as MOQS, focus group, participatory ergonomics, HITOP, MAS, and MEAD, among others.
This book introduces the main concepts of manufacturing systems and presents several evaluation approaches for these systems' evaluation. The relevant macroergonomics methods are summarized and the theoretical framework for Macroergonomic Compatibility construct is explained. This book presents a Macroergonomic Compatibility Model which proposes an instrument in the form of a Macroergonomic. The authors introduce a methodology to obtain a novel Macroergonomic Compatibility Index that enables manufacturing companies to assess and follow their progress on the implementation of macroergonomics practices.
This book presents algorithms and computational applications integrated in software that are being applied in the industry. It shows how companies using these tools are more competitive and efficient in the use and resources management. The book is organized in three sections, depending on the supply chain stage: procurement, including contact with costumers and product design; Production process, including relationship with suppliers and among departments; and Distribution, including logistics and transportation.
This book examines different innovations in worldwide agricultural-systems including the applications of artificial intelligence (AI), internet of things (IoT) and features of machine learning (ML) for the benefits of the farm-community. Specifically, it examines the use of agricultural equipment and IoT to reduce physical stress; innovative equipment that measure and reduce mental work load; and innovative techniques to help with employee safety. Featuring case studies and future implications, this book is an excellent guide for academics and researchers in the agri-sector.
This book reports the most recent, advanced, successful, and real applications of ergonomics in order to improve the human well-being and performance in a short term, as well as the organizational performance in a long term. The book is organized as follows: Physical Ergonomics. This section reports case studies where physical risk factors are presented in the workplace, such as physical risk factors including uncomfortable body postures, repetitive movements, force application, manual material handling, and physical environmental conditions. In addition, case studies must report applications from physical ergonomics methods, for instance, RULA, REBA, OWAS, NIOSH, JSI, Suzane Rodgers, ERIN, among others. Cognitive Ergonomics. This section reports the implementation of ergonomic tools, techniques, and methods in real case studies. These applications are aimed to know, decrease, and control cognitive and psychological risk factors, such as mental workload, information processing, situation awareness, human error identification, and interface analysis. These applications may include the following methods NASA-TLX, SWAT, CWA, SHERPA, HET, TAFEI, SAGAT, SART, SACRI, QUIS, SUMI, to mention a few of them. Macro-ergonomics. This section is focused on the analysis, design, and evaluation of work systems. It reports case studies where risk factors are beyond a specific workstation. These risk factors may include supervision styles, teamwork management, task variety, social relationships, organizational culture, organizational communication, technology, work schedules, and motivation, among others. In addition, case studies report the application of macro-ergonomic methods, such as MOQS, focus group, participatory ergonomics, HITOP, MAS, and MEAD, among others.
This book covers supply chain and logistics, production and manufacturing systems as well as human factors. Topics such as applications to procurements from suppliers, suppliers developments and relationships with suppliers are reported. The techniques and tools applied to production processes, such as, machinery maintenance and quick changeover, are described in detail. The book also presents human factors as the main component in the industrial engineering field, reporting some successful teamwork organizations for improvements and applied ergonomics, among others.
This book examines different innovations in worldwide agricultural-systems including the applications of artificial intelligence (AI), internet of things (IoT) and features of machine learning (ML) for the benefits of the farm-community. Specifically, it examines the use of agricultural equipment and IoT to reduce physical stress; innovative equipment that measure and reduce mental work load; and innovative techniques to help with employee safety. Featuring case studies and future implications, this book is an excellent guide for academics and researchers in the agri-sector.
|
You may like...
|