Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 16 of 16 matches in All Departments
This book presents the state-of-the art of one of the main concerns with microprocessors today, a phenomenon known as "dark silicon". Readers will learn how power constraints (both leakage and dynamic power) limit the extent to which large portions of a chip can be powered up at a given time, i.e. how much actual performance and functionality the microprocessor can provide. The authors describe their research toward the future of microprocessor development in the dark silicon era, covering a variety of important aspects of dark silicon-aware architectures including design, management, reliability, and test. Readers will benefit from specific recommendations for mitigating the dark silicon phenomenon, including energy-efficient, dedicated solutions and technologies to maximize the utilization and reliability of microprocessors.
This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.
As Moore 's law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallelization of the computation and 3D integration technologies lead to distributed memory architectures.This book describes recent research that addresses urgent challenges in many-core architectures and application mapping. It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies.
This book describes state-of-the-art approaches to Fog Computing, including the background of innovations achieved in recent years. Coverage includes various aspects of fog computing architectures for Internet of Things, driving reasons, variations and case studies. The authors discuss in detail key topics, such as meeting low latency and real-time requirements of applications, interoperability, federation and heterogeneous computing, energy efficiency and mobility, fog and cloud interplay, geo-distribution and location awareness, and case studies in healthcare and smart space applications.
Networks on Chip presents a variety of topics, problems and approaches with the common theme to systematically organize the on-chip communication in the form of a regular, shared communication network on chip, an NoC for short. As the number of processor cores and IP blocks integrated on a single chip is steadily growing, a systematic approach to design the communication infrastructure becomes necessary. Different variants of packed switched on-chip networks have been proposed by several groups during the past two years. This book summarizes the state of the art of these efforts and discusses the major issues from the physical integration to architecture to operating systems and application interfaces. It also provides a guideline and vision about the direction this field is moving to. Moreover, the book outlines the consequences of adopting design platforms based on packet switched network. The consequences may in fact be far reaching because many of the topics of distributed systems, distributed real-time systems, fault tolerant systems, parallel computer architecture, parallel programming as well as traditional system-on-chip issues will appear relevant but within the constraints of a single chip VLSI implementation. The book is organized in three parts. The first deals with system design and methodology issues. The second presents problems and solutions concerning the hardware and the basic communication infrastructure. Finally, the third part covers operating system, embedded software and application. However, communication from the physical to the application level is a central theme throughout the book. The book serves as an excellent reference source and may be usedas a text for advanced courses on the subject.
Over the last decade, advances in the semiconductor fabrication
process have led to the realization of true system-on-a-chip
devices. But the theories, methods and tools for designing,
integrating and verifying these complex systems have not kept pace
with our ability to build them. System level design is a critical
component in the search for methods to develop designs more
productively. However, there are a number of challenges that must
be overcome in order to implement system level modeling.
In Interconnect-centric Design for Advanced SoC and NoC, we have
tried to create a comprehensive understanding about on-chip
interconnect characteristics, design methodologies, layered views
on different abstraction levels and finally about applying the
interconnect-centric design in system-on-chip design.
This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.
This book describes state-of-the-art approaches to Fog Computing, including the background of innovations achieved in recent years. Coverage includes various aspects of fog computing architectures for Internet of Things, driving reasons, variations and case studies. The authors discuss in detail key topics, such as meeting low latency and real-time requirements of applications, interoperability, federation and heterogeneous computing, energy efficiency and mobility, fog and cloud interplay, geo-distribution and location awareness, and case studies in healthcare and smart space applications.
This book presents the state-of-the art of one of the main concerns with microprocessors today, a phenomenon known as "dark silicon". Readers will learn how power constraints (both leakage and dynamic power) limit the extent to which large portions of a chip can be powered up at a given time, i.e. how much actual performance and functionality the microprocessor can provide. The authors describe their research toward the future of microprocessor development in the dark silicon era, covering a variety of important aspects of dark silicon-aware architectures including design, management, reliability, and test. Readers will benefit from specific recommendations for mitigating the dark silicon phenomenon, including energy-efficient, dedicated solutions and technologies to maximize the utilization and reliability of microprocessors.
This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.
This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.
In Interconnect-centric Design for Advanced SoC and NoC, we have
tried to create a comprehensive understanding about on-chip
interconnect characteristics, design methodologies, layered views
on different abstraction levels and finally about applying the
interconnect-centric design in system-on-chip design.
Networks on Chip presents a variety of topics, problems and approaches with the common theme to systematically organize the on-chip communication in the form of a regular, shared communication network on chip, an NoC for short. As the number of processor cores and IP blocks integrated on a single chip is steadily growing, a systematic approach to design the communication infrastructure becomes necessary. Different variants of packed switched on-chip networks have been proposed by several groups during the past two years. This book summarizes the state of the art of these efforts and discusses the major issues from the physical integration to architecture to operating systems and application interfaces. It also provides a guideline and vision about the direction this field is moving to. Moreover, the book outlines the consequences of adopting design platforms based on packet switched network. The consequences may in fact be far reaching because many of the topics of distributed systems, distributed real-time systems, fault tolerant systems, parallel computer architecture, parallel programming as well as traditional system-on-chip issues will appear relevant but within the constraints of a single chip VLSI implementation. The book is organized in three parts. The first deals with system design and methodology issues. The second presents problems and solutions concerning the hardware and the basic communication infrastructure. Finally, the third part covers operating system, embedded software and application. However, communication from the physical to the application level is a central theme throughout the book. The book serves as an excellent reference source and may be used as a text for advanced courses on the subject.
This is an introductory textbook for courses in Synchronous Digital Design that enables students to develop useful intuitions for all of the key concepts of digital design. The author focuses this tutorial on the design flow, which is introduced as an iterative cycle of Analysis, Improvement, Modeling, and Synthesis. All the basic elements of digital design are covered, starting with the CMOS transistor to provide an abstraction upon which everything else is built. The other main foundational concepts introduced are clocked synchronous register-transfer level design, datapath, finite state machines and communication between clock domains.Â
Resource management has a long history in computing, from the early days of time-shared machines with pioneering fundamental work on run-time systems, distributed systems, real-time operating systems and middleware. The longevity and fundamental importance of the topic has resulted in an incredibly large body of work for on-chip resource management in the past two decades. The possible combinations of sub-topics and variations in the assumptions, use of different terminology, metrics, goals, and use-cases, leaves anyone attempting to review the literature overwhelmed. On-Chip Dynamic Resource Management is the first comprehensive and coherent review of all aspects of on-chip run-time resource management designed to facilitate understanding of recent trends in dynamic and adaptive strategies. The authors provide the reader with a framework within which they can navigate both existing, as well as evolving research efforts in on-chip dynamic resource management. Written by leading experts in the field, researchers and students are provided a structured review and discussion of the state of the art that is divided along the primary objectives of resource management techniques: performance, power, reliability and quality of service.
|
You may like...
|