Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
1. This book systematically introduces the theories and practices of convergent journalism in Chinese media. 2. The author utilizes a plethora of case studies to illustrate convergent journalism. 3. This title not only benefits students and scholars of communication studies, but also practitioners who are interested in learning about convergent journalism.
1. This book systematically introduces the theories and practices of convergent journalism in Chinese media. 2. The author utilizes a plethora of case studies to illustrate convergent journalism. 3. This title not only benefits students and scholars of communication studies, but also practitioners who are interested in learning about convergent journalism.
Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semi-structured and unstructured nature of the Web data. The field has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online. "
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks-which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning-most notably, multi-task learning, transfer learning, and meta-learning-because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
This book constitutes the thoroughly refereed post-proceedings of the 6th International Workshop on Mining Web Data, WEBKDD 2004, held in Seattle, WA, USA in August 2004 in conjunction with the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004. The 11 revised full papers presented together with a detailed preface went through two rounds of reviewing and improvement and were carfully selected for inclusion in the book. The extended papers are subdivided into 4 general groups: Web usage analysis and user modeling, Web personalization and recommender systems, search personalization, and semantic Web mining. The latter contains also papers from the joint KDD workshop on Mining for and from the Semantic Web, MSW 2004.
This book constitutes the refereed proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2002, held in Taipei, Taiwan, in May 2002.The 32 revised full papers and 20 short papers presented together with 4 invited contributions were carefully reviewed and selected from a total of 128 submissions. The papers are organized in topical sections on association rules; classification; interestingness; sequence mining; clustering; Web mining; semi-structure and concept mining; data warehouse and data cube; bio-data mining; temporal mining; and outliers, missing data, and causation.
Sustainable Crop Productivity and Quality under Climate Change: Responses of Crop Plants to Climate Change explores the physiological, biochemical, and molecular basis of the responses of major crop plants to a range of climate change scenarios. From the development of climate-resilient crop varieties which lead to enhanced crop productivity and quality to better utilization of natural resources to ensure food security through modern breeding techniques, it presents insights into improving yield while securing the environment. Understanding the impact of climate on crop quality and production is a key challenge of crop science. Predicted increases in climate variability necessitate crop varieties with intrinsic resilience to cooccurring abiotic stresses such as heat, drought, and flooding in a future climate of elevated CO2. This book presents a much-needed mechanistic understanding of the interactions between multiple stress responses of plants that is required to identify and take advantage of acclimation traits in major crop species as a prerequisite for securing robust yield and good quality. This book is an excellent reference for crop and agricultural scientists, plant scientists, and researchers working on crop plant ecophysiology/stress physiology and future crop production.
Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language. It is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining. In fact, this research has spread outside of computer science to the management sciences and social sciences due to its importance to business and society as a whole. The growing importance of sentiment analysis coincides with the growth of social media such as reviews, forum discussions, blogs, micro-blogs, Twitter, and social networks. For the first time in human history, we now have a huge volume of opinionated data recorded in digital form for analysis. Sentiment analysis systems are being applied in almost every business and social domain because opinions are central to almost all human activities and are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we make, are largely conditioned on how others see and evaluate the world. For this reason, when we need to make a decision we often seek out the opinions of others. This is true not only for individuals but also for organizations. This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references. It is suitable for students, researchers and practitioners who are interested in social media analysis in general and sentiment analysis in particular. Lecturers can readily use it in class for courses on natural language processing, social media analysis, text mining, and data mining. Lecture slides are also available online. Table of Contents: Preface / Sentiment Analysis: A Fascinating Problem / The Problem of Sentiment Analysis / Document Sentiment Classification / Sentence Subjectivity and Sentiment Classification / Aspect-Based Sentiment Analysis / Sentiment Lexicon Generation / Opinion Summarization / Analysis of Comparative Opinions / Opinion Search and Retrieval / Opinion Spam Detection / Quality of Reviews / Concluding Remarks / Bibliography / Author Biography
The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network analysis Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics
|
You may like...
|