|
Showing 1 - 1 of
1 matches in All Departments
All measurements are subject to error because no quantity can be
known exactly; hence, any measurement has a probability of lying
within a certain range. The more precise the measurement, the
smaller the range of uncertainty. Uncertainty, Calibration and
Probability is a comprehensive treatment of the statistics and
methods of estimating these calibration uncertainties.
The book features the general theory of uncertainty involving the
combination (convolution) of non-Gaussian, student t, and Gaussian
distributions; the use of rectangular distributions to represent
systematic uncertainties; and measurable and nonmeasurable
uncertainties that require estimation. The author also discusses
sources of measurement errors and curve fitting with numerous
examples of uncertainty case studies. Many useful tables and
computational formulae are included as well. All formulations are
discussed and demonstrated with the minimum of mathematical
knowledge assumed.
This second edition offers additional examples in each chapter, and
detailed additions and alterations made to the text. New chapters
consist of the general theory of uncertainty and applications to
industry and a new section discusses the use of orthogonal
polynomials in curve fitting.
Focusing on practical problems of measurement, Uncertainty,
Calibration and Probability is an invaluable reference tool for
R&D laboratories in the engineering/manufacturing industries
and for undergraduate and graduate students in physics,
engineering, and metrology.
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.