0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications... Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications (Hardcover, 1st ed. 2021)
Cecilia Tosciri
R4,592 Discovery Miles 45 920 Ships in 10 - 15 working days

The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H bb) signal measurement. The cross sections for the VH production times the H bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.

Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications... Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications (Paperback, 1st ed. 2021)
Cecilia Tosciri
R4,561 Discovery Miles 45 610 Ships in 10 - 15 working days

The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H bb) signal measurement. The cross sections for the VH production times the H bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Dala Black Aluminium Table Easel
R334 Discovery Miles 3 340
Kalmte In Die Malle Gejaag - Mindfulness…
Johannes Bertus de Villiers Paperback R360 R337 Discovery Miles 3 370
The Last Prophecy - (Book 2)
Murat Ukray Hardcover R953 Discovery Miles 9 530
The Light of Egypt - Volume One, the…
Thomas Burgoyne Hardcover R1,086 Discovery Miles 10 860
Horseshoe Lake, Arkansas
Bob Laster Hardcover R942 R815 Discovery Miles 8 150
Europa Dir Intl Orgs 2000
Europa Publications Hardcover R6,488 Discovery Miles 64 880
Art Will Save Your Life - Photo Album
Steven Stone Hardcover R1,439 R1,175 Discovery Miles 11 750
Africa's Billionaires - Inspirational…
Chris Bishop Paperback  (2)
R380 R351 Discovery Miles 3 510
Business Essentials
Hendrith Vanlon Smith Jr Hardcover R802 Discovery Miles 8 020
Unsettling Beliefs - Teaching Theory to…
Josh Diem, Robert Helenbein Hardcover R3,059 Discovery Miles 30 590

 

Partners