Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
This book features the latest advances and future trends in water science and technology. It also discusses the scientific popularization and quantitative resolution of a variety of mysterious properties of water and ice from the perspective of hydrogen-bond cooperativity in response to stimuli such as chemical contamination, electrification, magnetification, mechanical compression, molecular undercoordination, and thermal excitation. Anomalies include the floating of ice, the Hofmeister effect in solutions, regelation of ice, slipperiness of ice, water's tough skin, the Mpemba paradox, and the floating bridge. It also addresses the superfluidity of microchannels, hydrogen bond potentials, nanodroplet and bubble thermodynamics, quasisolidity and supersolidity, controlling superhydrophobicity-superhydrophilicity transition, and high-pressure ice formation. The target audience for this book includes students, senior scholars, engineers and practitioners in the area of physical chemistry, biology, as well as aqueous and colloid solutions.
This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.
The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O: H-O) and the anomalous behavior of water and ice under cooling, compressing and clustering. The target audience for this book includes scientists, engineers and practitioners in the area of surface science and nanoscience
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
This book features the latest advances and future trends in water science and technology. It also discusses the scientific popularization and quantitative resolution of a variety of mysterious properties of water and ice from the perspective of hydrogen-bond cooperativity in response to stimuli such as chemical contamination, electrification, magnetification, mechanical compression, molecular undercoordination, and thermal excitation. Anomalies include the floating of ice, the Hofmeister effect in solutions, regelation of ice, slipperiness of ice, water's tough skin, the Mpemba paradox, and the floating bridge. It also addresses the superfluidity of microchannels, hydrogen bond potentials, nanodroplet and bubble thermodynamics, quasisolidity and supersolidity, controlling superhydrophobicity-superhydrophilicity transition, and high-pressure ice formation. The target audience for this book includes students, senior scholars, engineers and practitioners in the area of physical chemistry, biology, as well as aqueous and colloid solutions.
The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behavior of water and ice under cooling, compressing and clustering. The target audience for this book includes scientists, engineers and practitioners in the area of surface science and nanoscience.
This book highlights the latest advances and outlines future trends in aqueous solvation studies from the perspective of hydrogen bond transition by charge injection, which reconciles the solvation dynamics, molecular nonbond interactions, and the extraordinary functionalities of various solutes on the solution bond network and properties. Focus is given on ionic and dipolar electrostatic polarization, O:H nonbond interaction, anti-HB and super-HB repulsion, and solute-solute interactions. Its target audience includes researchers, scientists, and engineers in chemistry, physics, surface and interface science, materials science and engineering.
|
You may like...
Westworld - Season 4 - The Choice
Evan Rachel Wood, Thandiwe Newton, …
DVD
R371
Discovery Miles 3 710
|