Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Intended for researchers and graduate students in theoretical computer science and mathematical logic, this volume contains accessible surveys by leading researchers from areas of current work in logical aspects of computer science, where both finite and infinite model-theoretic methods play an important role. Notably, the articles in this collection emphasize points of contact and connections between finite and infinite model theory in computer science that may suggest new directions for interaction. Among the topics discussed are: algorithmic model theory, descriptive complexity theory, finite model theory, finite variable logic, model checking, model theory for restricted classes of finite structures, and spatial databases. The chapters all include extensive bibliographies facilitating deeper exploration of the literature and further research.
Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.
Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis).
This book contains twenty-one essays by leading authorities on aspects of contemporary logic, ranging from foundations of set theory to applications of logic in computing and in the theory of fields. In those parts of logic closest to computer science, the gap between foundations and applications is often small, as illustrated by three essays on the proof theory of non-classical logics. There are also chapters on the lambda calculus, on relating logic programs to inductive definitions, on Buechi and Presburger arithmetics, and on definability in Lindenbaum algebras. Aspects of constructive mathematics discussed are embeddings of Heyting algebras and proofs in mathematical anslysis. Set theory is well covered with six chapters discussing Cohen forcing, Baire category, determinancy, Nash-Williams theory, critical points (and the remarkable connection between them and properties of left distributive operations) and independent structures. The longest chapter in the book is a survey of 0-minimal structures, by Lou van den Dries; during the last ten years these structures have come to take a central place in applications of model theory to fields and function theory, and this chapter is the first broad survey of the area. Other chapters illustrate how to apply model theory to field theory, complex geometry and groups, and how to recover from its automorphism group. Finally, one chapter applies to the theory of toric varieties to solve problems about many-valued logics.
|
You may like...
The South African Keto & Intermittent…
Rita Venter, Natalie Lawson
Paperback
|