0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (16)
  • R2,500 - R5,000 (13)
  • R5,000 - R10,000 (6)
  • -
Status
Brand

Showing 1 - 25 of 35 matches in All Departments

Artificial Intelligence - A Textbook (Hardcover, 1st ed. 2021): Charu C. Aggarwal Artificial Intelligence - A Textbook (Hardcover, 1st ed. 2021)
Charu C. Aggarwal
R1,723 Discovery Miles 17 230 Ships in 10 - 15 working days

This textbook covers the broader field of artificial intelligence. The chapters for this textbook span within three categories: Deductive reasoning methods: These methods start with pre-defined hypotheses and reason with them in order to arrive at logically sound conclusions. The underlying methods include search and logic-based methods. These methods are discussed in Chapters 1through 5. Inductive Learning Methods: These methods start with examples and use statistical methods in order to arrive at hypotheses. Examples include regression modeling, support vector machines, neural networks, reinforcement learning, unsupervised learning, and probabilistic graphical models. These methods are discussed in Chapters~6 through 11. Integrating Reasoning and Learning: Chapters~11 and 12 discuss techniques for integrating reasoning and learning. Examples include the use of knowledge graphs and neuro-symbolic artificial intelligence. The primary audience for this textbook are professors and advanced-level students in computer science. It is also possible to use this textbook for the mathematics requirements for an undergraduate data science course. Professionals working in this related field many also find this textbook useful as a reference.

Outlier Analysis (Hardcover, 2013 ed.): Charu C. Aggarwal Outlier Analysis (Hardcover, 2013 ed.)
Charu C. Aggarwal
R4,293 Discovery Miles 42 930 Ships in 12 - 17 working days

With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions- the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.

Outlier Ensembles - An Introduction (Hardcover, 1st ed. 2017): Charu C. Aggarwal, Saket Sathe Outlier Ensembles - An Introduction (Hardcover, 1st ed. 2017)
Charu C. Aggarwal, Saket Sathe
R2,241 Discovery Miles 22 410 Ships in 10 - 15 working days

This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.

Privacy-Preserving Data Mining - Models and Algorithms (Hardcover, 2008 ed.): Charu C. Aggarwal, Philip S. Yu Privacy-Preserving Data Mining - Models and Algorithms (Hardcover, 2008 ed.)
Charu C. Aggarwal, Philip S. Yu
R5,739 Discovery Miles 57 390 Ships in 10 - 15 working days

Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals. This has caused concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. Privacy Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science. This book is also suitable for practitioners in industry.

Social Network Data Analytics (Hardcover, 2011 ed.): Charu C. Aggarwal Social Network Data Analytics (Hardcover, 2011 ed.)
Charu C. Aggarwal
R4,322 Discovery Miles 43 220 Ships in 10 - 15 working days

Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Data Streams - Models and Algorithms (Hardcover): Charu C. Aggarwal Data Streams - Models and Algorithms (Hardcover)
Charu C. Aggarwal
R4,446 Discovery Miles 44 460 Ships in 10 - 15 working days

Data Streams: Models and Algorithms primarily discusses issues related to the mining aspects of streams. Recent progress in hardware technology makes it possible for organizations to store and record large streams of transactional data. For example, even simple daily transactions, such as using the credit card or phone, result in automated data storage, which brings us to a fairly new topic called data streams. This volume covers mining aspects of data streams in a comprehensive style, in which each contributed chapter contains a survey on the topic, the key ideas in the field from that particular topic, and future research directions. Data Streams: Models and Algorithms is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for graduate-level students in computer science.

Managing and Mining Graph Data (Hardcover, 2010 ed.): Charu C. Aggarwal, Haixun Wang Managing and Mining Graph Data (Hardcover, 2010 ed.)
Charu C. Aggarwal, Haixun Wang
R5,798 Discovery Miles 57 980 Ships in 10 - 15 working days

Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing.
Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Mining Text Data (Hardcover, 2012 ed.): Charu C. Aggarwal, ChengXiang Zhai Mining Text Data (Hardcover, 2012 ed.)
Charu C. Aggarwal, ChengXiang Zhai
R6,044 Discovery Miles 60 440 Ships in 12 - 17 working days

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned.

Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases.

Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.

Managing and Mining Sensor Data (Hardcover, 2013 ed.): Charu C. Aggarwal Managing and Mining Sensor Data (Hardcover, 2013 ed.)
Charu C. Aggarwal
R4,378 R3,731 Discovery Miles 37 310 Save R647 (15%) Ships in 12 - 17 working days

Advances in hardware technology have lead to an ability to collect data with the use of a variety of sensor technologies. In particular sensor notes have become cheaper and more efficient, and have even been integrated into day-to-day devices of use, such as mobile phones. This has lead to a much larger scale of applicability and mining of sensor data sets. The human-centric aspect of sensor data has created tremendous opportunities in integrating social aspects of sensor data collection into the mining process. Managing and Mining Sensor Data is a contributed volume by prominent leaders in this field, targeting advanced-level students in computer science as a secondary text book or reference. Practitioners and researchers working in this field will also find this book useful.

Outlier Analysis (Hardcover, 2nd ed. 2017): Charu C. Aggarwal Outlier Analysis (Hardcover, 2nd ed. 2017)
Charu C. Aggarwal
R1,971 R1,786 Discovery Miles 17 860 Save R185 (9%) Ships in 12 - 17 working days

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

Linear Algebra and Optimization for Machine Learning - A Textbook (Hardcover, 1st ed. 2020): Charu C. Aggarwal Linear Algebra and Optimization for Machine Learning - A Textbook (Hardcover, 1st ed. 2020)
Charu C. Aggarwal
R2,050 Discovery Miles 20 500 Ships in 12 - 17 working days

This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The "parent problem" of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

Recommender Systems - The Textbook (Hardcover, 1st ed. 2016): Charu C. Aggarwal Recommender Systems - The Textbook (Hardcover, 1st ed. 2016)
Charu C. Aggarwal
R1,975 R1,789 Discovery Miles 17 890 Save R186 (9%) Ships in 12 - 17 working days

This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Managing and Mining Uncertain Data (Hardcover, 1st Edition.
2nd Printing. 2009): Charu C. Aggarwal Managing and Mining Uncertain Data (Hardcover, 1st Edition. 2nd Printing. 2009)
Charu C. Aggarwal
R2,883 Discovery Miles 28 830 Ships in 10 - 15 working days

Managing and Mining Uncertain Data, a survey with chapters by a variety of well known researchers in the data mining field, presents the most recent models, algorithms, and applications in the uncertain data mining field in a structured and concise way. This book is organized to make it more accessible to applications-driven practitioners for solving real problems. Also, given the lack of structurally organized information on this topic, Managing and Mining Uncertain Data provides insights which are not easily accessible elsewhere. Managing and Mining Uncertain Data is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a reference book for advanced-level students in computer science and engineering, as well as the ACM, IEEE, SIAM, INFORMS and AAAI Society groups.

Healthcare Data Analytics (Paperback): Chandan K. Reddy, Charu C. Aggarwal Healthcare Data Analytics (Paperback)
Chandan K. Reddy, Charu C. Aggarwal
R1,518 Discovery Miles 15 180 Ships in 12 - 17 working days

At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available to solve healthcare problems. The book details novel techniques for acquiring, handling, retrieving, and making best use of healthcare data. It analyzes recent developments in healthcare computing and discusses emerging technologies that can help improve the health and well-being of patients. Written by prominent researchers and experts working in the healthcare domain, the book sheds light on many of the computational challenges in the field of medical informatics. Each chapter in the book is structured as a "survey-style" article discussing the prominent research issues and the advances made on that research topic. The book is divided into three major categories: Healthcare Data Sources and Basic Analytics - details the various healthcare data sources and analytical techniques used in the processing and analysis of such data Advanced Data Analytics for Healthcare - covers advanced analytical methods, including clinical prediction models, temporal pattern mining methods, and visual analytics Applications and Practical Systems for Healthcare - covers the applications of data analytics to pervasive healthcare, fraud detection, and drug discovery along with systems for medical imaging and decision support Computer scientists are usually not trained in domain-specific medical concepts, whereas medical practitioners and researchers have limited exposure to the data analytics area. The contents of this book will help to bring together these diverse communities by carefully and comprehensively discussing the most relevant contributions from each domain.

Machine Learning for Text (Paperback, Softcover reprint of the original 1st ed. 2018): Charu C. Aggarwal Machine Learning for Text (Paperback, Softcover reprint of the original 1st ed. 2018)
Charu C. Aggarwal
R1,572 Discovery Miles 15 720 Ships in 10 - 15 working days

Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories: - Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. - Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.

Data Clustering - Algorithms and Applications (Hardcover): Charu C. Aggarwal, Chandan K. Reddy Data Clustering - Algorithms and Applications (Hardcover)
Charu C. Aggarwal, Chandan K. Reddy
R3,827 Discovery Miles 38 270 Ships in 9 - 15 working days

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process-including how to verify the quality of the underlying clusters-through supervision, human intervention, or the automated generation of alternative clusters.

Outlier Ensembles - An Introduction (Paperback, Softcover reprint of the original 1st ed. 2017): Charu C. Aggarwal, Saket Sathe Outlier Ensembles - An Introduction (Paperback, Softcover reprint of the original 1st ed. 2017)
Charu C. Aggarwal, Saket Sathe
R2,255 Discovery Miles 22 550 Ships in 10 - 15 working days

This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.

Outlier Analysis (Paperback, Softcover reprint of the original 2nd ed. 2017): Charu C. Aggarwal Outlier Analysis (Paperback, Softcover reprint of the original 2nd ed. 2017)
Charu C. Aggarwal
R2,160 Discovery Miles 21 600 Ships in 10 - 15 working days

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

Managing and Mining Sensor Data (Paperback, 2013 ed.): Charu C. Aggarwal Managing and Mining Sensor Data (Paperback, 2013 ed.)
Charu C. Aggarwal
R2,918 Discovery Miles 29 180 Ships in 10 - 15 working days

Advances in hardware technology have lead to an ability to collect data with the use of a variety of sensor technologies. In particular sensor notes have become cheaper and more efficient, and have even been integrated into day-to-day devices of use, such as mobile phones. This has lead to a much larger scale of applicability and mining of sensor data sets. The human-centric aspect of sensor data has created tremendous opportunities in integrating social aspects of sensor data collection into the mining process. Managing and Mining Sensor Data is a contributed volume by prominent leaders in this field, targeting advanced-level students in computer science as a secondary text book or reference. Practitioners and researchers working in this field will also find this book useful.

Data Streams - Models and Algorithms (Paperback, 2007 ed.): Charu C. Aggarwal Data Streams - Models and Algorithms (Paperback, 2007 ed.)
Charu C. Aggarwal
R3,053 Discovery Miles 30 530 Ships in 10 - 15 working days

This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mining aspects of data streams comprehensively: each contributed chapter contains a survey on the topic, the key ideas in the field for that particular topic, and future research directions. The book is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for advanced-level students in computer science.

Social Network Data Analytics (Paperback, 2011 ed.): Charu C. Aggarwal Social Network Data Analytics (Paperback, 2011 ed.)
Charu C. Aggarwal
R4,269 Discovery Miles 42 690 Ships in 10 - 15 working days

Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Data Classification - Algorithms and Applications (Hardcover): Charu C. Aggarwal Data Classification - Algorithms and Applications (Hardcover)
Charu C. Aggarwal
R3,921 Discovery Miles 39 210 Ships in 12 - 17 working days

Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

Managing and Mining Graph Data (Paperback, Previously published in hardcover): Charu C. Aggarwal, Haixun Wang Managing and Mining Graph Data (Paperback, Previously published in hardcover)
Charu C. Aggarwal, Haixun Wang
R5,527 Discovery Miles 55 270 Ships in 10 - 15 working days

Managing and Mining Graph Data is a comprehensive survey book in graph data analytics. It contains extensive surveys on important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by leading researchers, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing.

Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science.

About the Editors:
Charu C. Aggarwal obtained his B.Tech in Computer Science from IIT Kanpur in 1993 and Ph.D. from MIT in 1996. He has worked as a researcher at IBM since then, and has published over 130 papers in major data mining conferences and journals. He has applied for or been granted over 70 US and International patents, and has thrice been designated a Master Inventor at IBM. He has received an IBM Corporate award for his work on data stream analytics, and an IBM Outstanding Innovation Award for his work on privacy technology. He has served on the executive committees of most major data mining conferences. He has served as an associate editor of the IEEE TKDE, as an associate editor of the ACM SIGKDD Explorations, and as an action editor of the DMKD Journal. He is a fellow of the IEEE, and a life-member of the ACM.

Haixun Wang is currently a researcher at Microsoft Research Asia. He received the B.S. and the M.S. degree, both in computer science, from Shanghai Jiao Tong University in 1994 and 1996. He received the Ph.D. degree in computer science from the University of California, Los Angeles in 2000. He subsequently worked as a researcher at IBM until 2009. His main research interest is database language and systems, data mining, and information retrieval. He has published more than 100 research papers in referred international journals and conference proceedings. He serves as an associate editor of the IEEE TKDE, and has served as a reviewer and program committee member of leading database conferences and journals.


Managing and Mining Uncertain Data (Paperback, Softcover reprint of hardcover 1st ed. 2009): Charu C. Aggarwal Managing and Mining Uncertain Data (Paperback, Softcover reprint of hardcover 1st ed. 2009)
Charu C. Aggarwal
R3,789 Discovery Miles 37 890 Ships in 10 - 15 working days

Managing and Mining Uncertain Data, a survey with chapters by a variety of well known researchers in the data mining field, presents the most recent models, algorithms, and applications in the uncertain data mining field in a structured and concise way. This book is organized to make it more accessible to applications-driven practitioners for solving real problems. Also, given the lack of structurally organized information on this topic, Managing and Mining Uncertain Data provides insights which are not easily accessible elsewhere. Managing and Mining Uncertain Data is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a reference book for advanced-level students in computer science and engineering, as well as the ACM, IEEE, SIAM, INFORMS and AAAI Society groups.

Privacy-Preserving Data Mining - Models and Algorithms (Paperback, Softcover reprint of hardcover 1st ed. 2008): Charu C.... Privacy-Preserving Data Mining - Models and Algorithms (Paperback, Softcover reprint of hardcover 1st ed. 2008)
Charu C. Aggarwal, Philip S. Yu
R5,498 Discovery Miles 54 980 Ships in 10 - 15 working days

Advances in hardware technology have increased the capability to store and record personal data. This has caused concerns that personal data may be abused. This book proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. The book is designed for researchers, professors, and advanced-level students in computer science, but is also suitable for practitioners in industry.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Basic science for health students
C. Radue, W. Schoeman, … Paperback R718 R632 Discovery Miles 6 320
The Medical Adviser in Life Assurance
Edward Henry Sieveking Paperback R430 Discovery Miles 4 300
Cancer - Navigating The Journey
Cherry Armstrong Paperback R390 R305 Discovery Miles 3 050
Building Confianza - Empowering…
Dalia MagaƱa Hardcover R3,344 Discovery Miles 33 440
The Clever Guts Diet - How to…
Michael Mosley Paperback  (1)
R327 R266 Discovery Miles 2 660
Keto Diet Cookbook
Josh Axe Paperback  (2)
R525 R420 Discovery Miles 4 200
Progressive Medicine, Vol. 3: A…
Hobart Amory Hare Hardcover R683 Discovery Miles 6 830
Vlok's Community Health For Southern…
Marina Clarke Paperback R774 R680 Discovery Miles 6 800
The Cause of the Coagulation of the…
Benjamin Ward Richardson Paperback R669 Discovery Miles 6 690
Holding My Breath - Further Exploits Of…
Anne Biccard Paperback  (1)
R265 R207 Discovery Miles 2 070

 

Partners