![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 91 matches in All Departments
Functionalized Nanomaterials for Biosensing and Bioelectronics Applications: Trends and Challenges describes current and future opportunities for integrating the unique properties of two-dimensional nanomaterials with bioelectronic interfaces. Sections focus on background information and fundamental concepts, review the available functionalized nanomaterials and their properties, explore the integration of functionalized nanomaterials with bioelectronics, including available fabrication and characterization methods, electrical behavior at the interface, and design and synthesis guidelines, and review examples of microsystems where functionalized nanomaterials are being integrated with bioelectronics. This book is suitable for researchers and practitioners in academia and R&D working in materials science and engineering, analytical chemistry and related fields.
Antimicrobial Nanosystems: Fabrication and Development provides an in-depth review of nanotechnological advancements in the fields of biotechnology and pharmaceutical industries to counteract bacterial infections and related health issues. Functionalized nanomaterials and their processes are covered, along with the theory and fabrication of antimicrobial nanosystems. The potential applications of antimicrobial nanosystems are also discussed along with their challenges and commercialization. This book discusses the most frequent problems caused by resistant microorganisms and difficult-to-treat bacteria and highlights the impact of recently developed antimicrobial nanosystems. Various methodsto obtain efficient nanomaterials with antimicrobial properties are described, along with their advantages, challenges, and main applications. The design of targeting antimicrobial therapeutics, able to specifically detect pathogenic microorganisms and to act in a very specific manner, is thoroughly investigated.
Smart Supercapacitors: Fundamentals, Structures and Applications presents current research and technology surrounding smart supercapacitors, also exploring their rapidly emerging characteristics and future potential advancements. The book begins by describing the basics and fundamentals related to supercapacitors and their applicability as smart and next generation energy storing devices. Subsequent sections discuss electrode materials, their fabrication, specific designing techniques, and a review of the application and commercialization of this technology. This book will appeal to researchers and engineers from both academia and industry, making it a vital resource to help them revolutionize modern supercapacitors.
Environmental Applications of Microbial Nanotechnology: Emerging Trends in Environmental Remediation discusses emerging trends and recent advancements in environmental remediation. The book provides environmental applications of microbial nanotechnology that helps readers understand novel microbial systems and take advantage of recent advances in microbial nanotechnologies. It highlights established research and technology on microbial nanotechnology's environmental applications, moves to rapidly emerging aspects and then discusses future research directions. The book provides researchers in academia and industry with a high-tech start-up that will revolutionize the modern environmental applications of microbial nanotechnology research.
Functionalized Carbon Nanomaterials for Theranostic Applications offers insights into the developments and trends that are progressing fast in the field of functionalized carbon nanomaterials-based devices as diagnostic tools for early stage detection of human diseases. The book provides information on how functionalized carbon nanomaterials are being used as the basis for products, such as early disease diagnostic kits, quantum dots for medical imaging and a growing list of other applications. Sections cover different mechanical, absorption, optical and electrical properties than those found in original nanomaterials. This is an important reference source that will be valuable to materials scientists, biomedical engineers and pharmaceutical scientists who are looking to increase their understanding on how functionalized carbon nanomaterials are being used for a variety of theranostic applications.
Carbon Dots in Analytical Chemistry: Detection and Imaging explores recent progress in the field of carbon dots synthesis and properties and their integration with various miniaturized analytical devices for the detection of chemical species and imaging of cells. This book is dedicated to exploring the potential applications of carbon dots in analytical chemistry for clinical microbiology, pharmaceutical analysis and environmental analysis. Sections cover synthetic approaches and properties, sample preparation, analytical techniques for the detection of chemical species, imaging of molecules and cells, and analytical tools for biomedical and food analysis. The will be a valuable book for analytical and materials scientists, physical and chemical scientists, and engineers investigating the use of carbon nanomaterials in their analytical procedures.
Sensing Tools and Techniques for COVID-19: Developments and Challenges in Analysis and Detection of Coronavirus helps readers understand the basic principles of sensor development. Sections give a brief overview of the physical and chemical properties of sensing tools and the basics of techniques. With recent advancements in sensing technology, various smart materials and techniques are now being employed for new purposes. In addition, biosensing devices can be tuned at the molecular level to perform better detection of COVID-19. This book covers the various approaches for the development and fabrication of biosensor systems for the analysis of the novel coronavirus. In addition, the book discusses the commercialization and standardization of biosensing technology, along with future perspectives on biosensor technologies used for the analysis and treatment of COVID-19. This book will serve as an up-to-date source of trusted information on biosensor tools and techniques for the analysis of COVID-19.
Industrial Applications of Nanocrystals provides an overview of the properties and industrial applications of nanocrystalline materials. The aim of this book is to deliver advances in the use of nanocrystals across various industrial sectors. Chapter topics include approaches to the synthesis and green synthesis of nanocrystals and the applications of nanocrystals in the pharmaceutical, biomedical, environmental, catalysis, electrochemical energy storage device, and emerging industries. Nanocrystals are a major driver of technology and business in this century and hold the promise of high-performance materials that will significantly affect all aspects of society. Likewise, nanocrystals are driving development and innovation in numerous manufacturing sectors. However, complications keep nanocrystals from making a greater impact on manufacturing. The lack of information as well as the possibility of adverse influences on the environment, human health, safety, and sustainability are still major challenges. This book addresses these challenges for the use of nanomaterials in major manufacturing sectors.
Environmental Sustainability and Industries identifies and discusses critical areas related to environmentally conscious industrial development of products and services that may support more sustainable and equitable societies. This book addresses pollution prevention by referring to the use of processes, practices, and materials that reduce or eliminate the generation of pollutants at the source of production, more efficient use of raw materials, energy, water or other resources, or by conserving natural resources by maintaining clean production. It explains industrial energy efficiency as the most cost-effective use of energy in manufacturing processes, reducing its wastage as well as the total consumption of primary energy resources. Life cycle assessment is used as an analytical method to quantify environmental impacts, focusing on environmental considerations concerning process design and optimization, and including various sustainable manufacturing parameters in the context of industrial processes and proposes a classification of identified parameters to evaluate and optimize the manufacturing performances. The book also dives into industrial ecology, investigating how, where, and why environmental improvements can be made to develop a sustainable industry, meeting the needs of current generations without sacrificing the needs of the future ones. This book analyzes a company's environmental, social, and economic performance and their interrelationships, emphasizing the importance of identifying and understanding causal relationships between alternative approaches to action and their impact on financial and nonfinancial performance. It concludes with a view on the future of sustainable industrial systems stressing change as a joint effort of scientists, governments, people in business, and academicians.
Surface Modified Nanomaterials for Applications in Catalysis: Fundamentals, Methods and Applications provides an overview of the different state-of-the-art surface modification methods of nanomaterials and their commercial applications. The main objective of this book is to comprehensively cover the modification of nanomaterial and their fabrication, including different techniques and discussions of present and emerging commercial applications. The book addresses fundamental chemistry concepts as applied to the modification of nanomaterials for applications in energy, catalysis, water remediation, sensors, and more. Characterization and fabrication methodologies are reviewed, along with the challenges of up-scaling of processes for commercial applications. This book is suitable for academics and practitioners working in materials science, engineering, nanotechnology, green chemistry and chemical engineering.
Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications covers the most recent research and design trends for carbon nanomaterials-based sensors for a variety of applications, including clinical and environmental uses, and more. Carbon nanomaterials-based sensors can be used with high sensitivity, stability and accuracy compared to other techniques. Written by experts in their given fields from around the world, this book helps researchers solve the particular challenges they face when developing new types of sensors. It instructs how to make sensitive, selective, robust, fast-response and stable carbon nanomaterial-based sensors, as well as how to utilize them in real life.
Membranes with Functionalized Nanomaterials: Current and Emerging Research Trends in Membrane Technology provides researchers and practitioners with basic and advanced knowledge of sustainable membrane technology. The book summarizes recent progress made in novel functionalized nanomaterials (FNMs) used in modern membrane technology. It gives a comprehensive overview of state-of-the-art technologies in the field of nanomaterial-based membranes and provides in an in-depth and step-by-step way the foundational scientific knowledge on various sustainable membranes with FNMs technologies and their impact on society and in various industries. In addition, readers get a handbook in a compact form with various aspects of FNMs-based sustainable membranes.
Fundamentals and Industrial Applications of Magnetic Nanomaterials highlights industrial applications of magnetic nanoparticles, reviews their rapidly emerging applications, and discusses future research directions. The book emphasizes the structure-property-functionality of magnetic nanoparticles for the most relevant industry applications. After reviewing the fundamentals, industry applications in the biomedical, pharma, environmental, cosmetics and energy industries are explored. Cross-cutting barriers to commercialization are then discussed, along with legal, health and safety implications. Finally, opportunities for enabling a more sustainable future are covered. This book is suitable for researchers and practitioners in academia and industry in materials science and engineering, chemistry and chemical engineering.
Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications provides a comprehensive overview of materials, functionalized interfaces, fabrication strategies and application areas. Special attention is given to the remaining challenges and opportunities for commercial realization of functionalized nanomaterial-based electrochemical sensors. An assortment of nanomaterials has been investigated for their incorporation into electrochemical sensors. For example, carbon- based nanomaterials (carbon nanotube, graphene and carbon fiber), noble metals (Au, Ag and Pt), polymers (nafion, polypyrrole) and non-noble metal oxides (Fe2O3, NiO, and Co3O4). The most relevant materials are discussed in the book with an emphasis on their evaluation of their realization in commercial applications. Application areas touched on include the environment, food and medicine industries. Health, safety and regulation considerations are touched on, along with economic and commercialization trends.
Nanocellulose Materials: Fabrication and Industrial Applications focuses on the practices, distribution and applications of cellulose at the nanoscale. The book delivers recent advancements, highlights new perspectives and generic approaches on the rational use of nanocellulose, and includes sustainability advantages over conventional sources towards green and sustainable industrial developments. The topics and sub-topics are framed to cover all key features of cellulose, from extraction to technological evolution. Nanocellulose has great potential due to its versatility and numerous applications, including the potential role of nanocellulose scaffold derivatives towards active involvement in the energy sector, chemical sensing, catalysis, food industry and anti-bacterial coatings towards land, agricultural and aquatic systems.
Intelligent Nanobiosystems in Medicine and Healthcare, Volume One: Fundamentals, Fabrication and Commercialization provides an overview of recent progress in the nanobiosystems arena, helping readers design and develop novel drug delivery systems and devices that take advantage of recent advances in nanomedical technologies. The book explores a wide range of promising approaches for the diagnosis and treatment of diseases using the latest advancement in cutting-edge nanomedical technologies. It highlights established research and technology on intelligent nanobiosystems, their rapidly emerging aspects, and future research directions. Sections cover nanobiosystems, explore nano candidates and fabrication aspects, and delve into the challenges of commercialization.This book will be a useful resource for researchers and postgraduate students in pharmaceutical sciences and biotechnology as well as medical professionals, biologists, chemists, materials scientists, clinical researchers, biochemical and biomedical engineers working both in academia and industry.
Intelligent Nanobiosystems in Medicine and Healthcare, Volume 2: Applications of Intelligent Nanobiosystems provides recent progress in the nanobiosystems arena, helping readers better design and develop novel drug delivery systems and devices that take advantage of recent advances in nanomedical technologies. The book explores a wide range of promising approaches for the diagnosis and treatment of diseases using the latest advancements in cutting-edge nanomedical technologies. This updated volume includes chapters by experts in the field, featuring an exploration of targeted therapy and drug delivery systems, analytical and imaging tools, theranostics, tissue engineering and regenerative medicines, dentistry tools and modern developments. This book will be a useful resource for researchers and postgraduate students in pharmaceutical sciences and biotechnology industries as well as medical professionals, biologists, chemists, materials scientists, clinical researchers, and biochemical and biomedical engineers working both in industry and academia.
Inorganic Anticorrosive Materials (IAMs): Past, Present, and Future Perspectives covers the anticorrosive effects ofinorganic materials and metaloxides in particular. The bookpresentsthelatestdevelopmentsin corrosion inhibition anddiscussesfuture opportunities.Italso addressesthe fundamental characteristics, synthesis, inhibition mechanisms,and applications ofmetal oxides ascorrosion inhibitors in industryand provides a chronological overview of the growth of the field.The book concludes with discussions about commercialization and economics. This book is an indispensable reference for scholars, chemical engineers, chemists, and materials scientists working in research and development and in academia who require comprehensive knowledge of corrosion-inhibition mechanisms.
Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste provides a comprehensive overview of the key technologies and approaches to achieve zero waste from energy. The book emphasizes the importance of an integrated approach to waste-to-energy using fundamental concepts and principles, and presents key methods, their applications, and perspectives on future development. The book provides readers with the tools to make key decisions on waste-to-energy projects from zero-waste principles, while incorporating sustainability and life cycle assessments from financial and environmental perspectives. Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste offers practical guidance on achieving energy with zero waste ideal for researchers and graduate students involved in waste-to-energy and renewable energy, waste remediation, and sustainability.
Green Nanomaterials for Industrial Applications explores the applications of nanomaterials for a variety of industry sectors, along with their environmental impacts, lifecycle analysis, safety and sustainability. This book brings together the industrial applications of nanomaterials, covering new trends and challenges. Significant properties, safety and sustainability and environmental impacts of synthesis routes are also explored, as are major industrial applications, including agriculture, medicine, communications, construction, energy, and in the military. This book is an important information source for those in research and development who want to gain a greater understanding of how nanotechnology is being used to create cheaper, more efficient products. Green nanomaterials have significant advantages including low cost, high efficiency, neutral environmental impact, and stability. Green Nanomaterials for Industrial Applications provides comprehensive information about green nanomaterials, their types, and methods for generation, characterization as well as their properties. Furthermore, this book also provides coverage of industrial scale fabrication methods for green nanomaterials and their applications for various industrial sectors at both experimental and theoretical models scales. This book is an important reference source for materials scientists, engineers and environmental scientists who want to learn more about how sustainable nanomaterials are being used in a range of industrial applications.
Environmentally Sustainable Corrosion Inhibitors: Fundamentals and Industrial Applications covers the latest research developments in environmentally friendly, sustainable corrosion inhibitors. The book addresses the fundamental characteristics, synthesis, characterization and mechanisms of corrosion inhibitors. In addition, it presents a chronological overview of the growth of the field, with numerous examples of its broad-ranging industrial applications in a.o. food, the environment, electronics, and the oil and gas industries. The book concludes with discussions about commercialization and economics. This is an indispensable reference for chemical engineers and chemists working in R&D and academia who want to learn more about environmentally-friendly, sustainable corrosion inhibitors systems.
COVID-19 in the Environment: Impact, Concerns, and Management of Coronavirus highlights the research and technology addressing COVID-19 in the environment, including the associated fate, transport, and disposal. It examines the impacts of the virus at local, national, and global levels, including both positive and negative environmental impacts and techniques for assessing and managing them. Utilizing case studies, it also presents examples of various issues around handling these impacts, as well as policies and strategies being developed as a result. Organized into six parts, COVID-19 in the Environment begins by presenting the nature of the virus and its transmission in various environmental media, as well as models for reducing the transmission. Section 2 describes methods for monitoring and detecting the virus, whereas Sections 3, 4, and 5 go on to examine the socio-economic impact, the environmental impact and risk, and the waste management impact, respectively. Finally, Section 6 explores the environmental policies and strategies that have comes as a result of COVID-19, the implications for climate change, and what the long-term effects will be on environmental sustainability.
Handbook of Functionalized Nanomaterials: Environmental Health and Safety discusses the reactive properties of FNMs used in a range of applications, and their toxic impact on the environment. Nanomaterials have unique properties that can make them highly reactive. This reactivity can cause unwanted interactions with living cells, an increase in oxidative stress or damage to genetic material - resulting in damage to the environment and local wildlife. This negative impact is often further increased after surface functionalization of nanomaterials with other materials which offer unique properties of their own. To ensure environmental safety and ecological balance, rigorous toxicity testing of functionalized nanomaterials (FNMs) is necessary. This book discusses the toxicological uncertainties of FNMs and the limitations of FNMs in a range of applications. Later chapters propose methods to reliably assess the harm that functionalized nanomaterials can cause to the environment and wildlife, as well covering recent developments in the field of environmental health safety. The book concludes with a discussion on the future prospects of safe functionalized nanomaterials.
Green nanomaterials are classed as nanomaterials with no environmentally harmful, toxic, properties. The photocatalysis of nanomaterials involves photo-conduction value in efficient removal/degradation of noxious pollutants. Green nanotechnology has objectives for the development of products and processes which are environmentally friendly, economically sustainable, safe, energy-efficient, and produce little waste or emissions. Such products and processes are based on renewable materials and/or have a low net impact on the environment. Green functionalized nanomaterials, formed by a combination of nanomaterials with natural materials or are derived through a green source, are the new trends in the remediation of pollutants in environmental industries. This has the effect of making photoactive nanomaterials work under UV/sunlight radiation in order to produce reactive radical species that rapidly remove pollutants by redox mechanism. Green Functionalized Nanomaterials for Environmental Applications focuses on recent developments in the area of fabrication of green nanomaterials and their properties. It also looks at ways of lowering the risk of exposure of green functionalized nanomaterials. This needs to be pursued in the future for investigating and assessing health risks, which may be due to exposure to green nanomaterials. It is an important reference source for all those seeking to improve their understanding of how green functionalized nanomaterials are being used in a range of environmental applications, as well as considering potential toxicity implications.
Smartphone usage has created a new means for detection, analysis, diagnosis and monitoring through the use of new apps and attachments. These breakthrough analytical methods offer ways to overcome the drawbacks of more conventional methods, such as the expensive instrumentation that is often needed, complex sample pre-treatment steps, or time-consuming procedures. Smartphone-Based Detection Devices: Emerging Trends in Analytical Techniques gathers these modern developments in smartphone analytical methods into one comprehensive source, covering recent advancements in analytical tools while paying special attention to the most accurate, highly efficient approaches. Serving as a guide not only to analytical chemists but also to environmentalists, biotechnologists, pharmacists, forensic scientists and toxicologists, Smartphone-Based Detection Devices: Emerging Trends in Analytical Techniques is an important source for researchers who require accurate analysis of their on- and off-site samples. Students in these fields at the graduate and post-graduate level will also benefit from this topical and comprehensive book. |
![]() ![]() You may like...
The Origin of the Prologue to St. John's…
J. Rendel Harris
Hardcover
High Note Level 1 Student's Book & eBook…
Catrin Morris, Rod Fricker, …
Paperback
R1,527
Discovery Miles 15 270
Supply Chain Intelligence - Application…
Kaushik Kumar, J. Paulo Davim
Hardcover
R4,919
Discovery Miles 49 190
Sapiens - A Brief History Of Humankind
Yuval Noah Harari
Paperback
![]()
|