Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.
Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance. Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures.
This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.
Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance. Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures.
|
You may like...
George Washington's 1790 Grand Tour of…
Dr Joanne S Grasso
Paperback
|