0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar,... Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R1,916 Discovery Miles 19 160 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Dimensionality Reduction in Data Science (1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas... Dimensionality Reduction in Data Science (1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R1,764 Discovery Miles 17 640 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
New English Adventure GL Starter B TB
Jennifer Heath Paperback R1,613 Discovery Miles 16 130
Entrepreneurship And New Venture…
Paperback R633 Discovery Miles 6 330
The SABC 8
Foeta Krige Paperback R358 Discovery Miles 3 580
Rise and Shine Level 2 Busy Book
Paperback R521 Discovery Miles 5 210
Public Economics
E. Calitz, K. Siebrits Paperback R677 Discovery Miles 6 770
Fly High Level 2 Activity Book and CD…
Jeanne Perrett, Charlotte Covill Paperback R501 Discovery Miles 5 010
History Of South Africa - From 1902 To…
Thula Simpson Paperback R450 R415 Discovery Miles 4 150
Lancôme L'absolu Lacquer Lipstick (8ml…
R238 Discovery Miles 2 380
Asterix And The Chieftain's Daughter
Jean-Yves Ferri Paperback  (1)
R250 R223 Discovery Miles 2 230
Byredo Semi-Formal 373 Lipstick (3g…
R1,015 R846 Discovery Miles 8 460

 

Partners