0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Direct Methods in the Theory of Elliptic Equations (Hardcover, 1st ed. 2012, Corr. 3rd printing 2012): Jindrich Necas Direct Methods in the Theory of Elliptic Equations (Hardcover, 1st ed. 2012, Corr. 3rd printing 2012)
Jindrich Necas; Contributions by Christian G Simader; Preface by Sarka Necasova; Translated by Gerard Tronel, Alois Kufner
R3,422 Discovery Miles 34 220 Ships in 10 - 15 working days

Ne as' book "Direct Methods in the Theory of Elliptic Equations," published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Ne as' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.

The volume gives a self-contained presentation of the elliptic theory based on the "direct method," also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications."

Direct Methods in the Theory of Elliptic Equations (Paperback, 2012 ed.): Jindrich Necas Direct Methods in the Theory of Elliptic Equations (Paperback, 2012 ed.)
Jindrich Necas; Contributions by Christian G Simader; Preface by Sarka Necasova; Translated by Gerard Tronel, Alois Kufner
R3,392 Discovery Miles 33 920 Ships in 10 - 15 working days

Ne as' book "Direct Methods in the Theory of Elliptic Equations," published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Ne as' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.

The volume gives a self-contained presentation of the elliptic theory based on the "direct method," also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.

On Dirichlet's Boundary Value Problem - LP-Theory based on a Generalization of Garding's Inequality (Paperback, 1972... On Dirichlet's Boundary Value Problem - LP-Theory based on a Generalization of Garding's Inequality (Paperback, 1972 ed.)
Christian G Simader
R1,366 Discovery Miles 13 660 Ships in 10 - 15 working days
Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Pathogenic Neisseria - Genomics…
John K. Davies, Charlene M. Kahler Hardcover R6,977 Discovery Miles 69 770
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan Paperback R380 R356 Discovery Miles 3 560
Ancient Egyptians at Play - Board Games…
Walter Crist, Anne-Elizabeth Dunn-Vaturi, … Hardcover R4,237 Discovery Miles 42 370
DNA Replication Across Taxa, Volume 39
Laura Kaguni Hardcover R4,383 R3,676 Discovery Miles 36 760
Gifts for the Gods - Ancient Egyptian…
Lidija M. Mcknight, Stephanie Atherton-Woolham Paperback R933 Discovery Miles 9 330
Concepts and Techniques in Genomics and…
N. Saraswathy, P Ramalingam Paperback R2,245 R2,125 Discovery Miles 21 250
Iron In The Soul - The Leaders Of The…
F. A. Mouton Paperback  (1)
R108 Discovery Miles 1 080
Protecting Pharaoh's Treasures - My Life…
Wafaa El-Saddik, Rudiger Heimlich Hardcover R681 Discovery Miles 6 810
65 Years Of Friendship
George Bizos Paperback  (2)
R391 Discovery Miles 3 910
Archaeologists, Tourists, Interpreters…
Rachel Mairs, Maya Muratov Hardcover R4,229 Discovery Miles 42 290

 

Partners