![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Using a selection of key experiments performed over the past 30 years or so, we present a discussion of the strikingly counter-intuitive phenomena of the quantum world that defy explanation in terms of everyday "common sense" reasoning, and we provide the corresponding quantum mechanical explanations with a very elementary use of associated formalism. Most, but certainly not all, of the experiments we describe are optical experiments involving a very small number of photons (particles of light). We begin with experiments on the wave-particle duality of electrons, proceed to experiments on the particle nature of light and single photon interference, delayed choice experiments and interaction-free detection, then go on to experiments involving the interference of two photons, quantum entanglement and Bell's Theorem, quantum teleportation, large-scale quantum effects and the divide between the classical and quantum worlds, addressing the question as to whether or not there is such a divide.
Using a selection of key experiments performed over the past 30 years or so, we present a discussion of the strikingly counter-intuitive phenomena of the quantum world that defy explanation in terms of everyday "common sense" reasoning, and we provide the corresponding quantum mechanical explanations with a very elementary use of associated formalism. Most, but certainly not all, of the experiments we describe are optical experiments involving a very small number of photons (particles of light). We begin with experiments on the wave-particle duality of electrons, proceed to experiments on the particle nature of light and single photon interference, delayed choice experiments and interaction-free detection, then go on to experiments involving the interference of two photons, quantum entanglement and Bell's Theorem, quantum teleportation, large-scale quantum effects and the divide between the classical and quantum worlds, addressing the question as to whether or not there is such a divide.
This established textbook provides an accessible but comprehensive introduction to the quantum nature of light and its interaction with matter. The field of quantum optics is covered with clarity and depth, from the underlying theoretical framework of field quantization, atom–field interactions, and quantum coherence theory, to important and modern applications at the forefront of current research such as quantum interferometry, squeezed light, quantum entanglement, cavity quantum electrodynamics, laser-cooled trapped ions, and quantum information processing. The text is suitable for advanced undergraduate and graduate students and would be an ideal main text for a course on quantum optics. This long-awaited second edition builds upon the success of the first edition, including many new developments in the field, particularly in the area of quantum state engineering. Additional homework problems have been added, and content from the first edition has been updated and clarified throughout.
|
You may like...
Task Sequencing and Instructed Second…
Melissa Baralt, Roger Gilabert, …
Hardcover
R4,957
Discovery Miles 49 570
Understanding Educational Psychology
Irma Eloff, Estelle Swart
Paperback
Recent Advances in Nonlinear Dynamics…
Kyandoghere Kyamakya, Wolfgang Mathis, …
Hardcover
|