Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.
This book highlights the latest findings on nonlinear dynamical systems including two types of attractors: self-excited and hidden attractors. Further, it presents both theoretical and practical approaches to investigating nonlinear dynamical systems with self-excited and hidden attractors. The book includes 20 chapters contributed by respected experts, which focus on various applications such as biological systems, memristor-based systems, fractional-order systems, finance systems, business cycles, oscillators, coupled systems, hyperchaotic systems, flexible robot manipulators, electronic circuits, and control models. Special attention is given to modeling, design, circuit realization, and practical applications to address recent research problems in nonlinear dynamical systems. The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems.
This book reports on the latest advances in and applications of memristors, memristive devices and systems. It gathers 20 contributed chapters by subject experts, including pioneers in the field such as Leon Chua (UC Berkeley, USA) and R.S. Williams (HP Labs, USA), who are specialized in the various topics addressed in this book, and covers broad areas of memristors and memristive devices such as: memristor emulators, oscillators, chaotic and hyperchaotic memristive systems, control of memristive systems, memristor-based min-max circuits, canonic memristors, memristive-based neuromorphic applications, implementation of memristor-based chaotic oscillators, inverse memristors, linear memristor devices, delayed memristive systems, flux-controlled memristive emulators, etc. Throughout the book, special emphasis is given to papers offering practical solutions and design, modeling, and implementation insights to address current research problems in memristors, memristive devices and systems. As such, it offers a valuable reference book on memristors and memristive devices for graduate students and researchers with a basic knowledge of electrical and control systems engineering.
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields.
This book highlights the latest findings on nonlinear dynamical systems including two types of attractors: self-excited and hidden attractors. Further, it presents both theoretical and practical approaches to investigating nonlinear dynamical systems with self-excited and hidden attractors. The book includes 20 chapters contributed by respected experts, which focus on various applications such as biological systems, memristor-based systems, fractional-order systems, finance systems, business cycles, oscillators, coupled systems, hyperchaotic systems, flexible robot manipulators, electronic circuits, and control models. Special attention is given to modeling, design, circuit realization, and practical applications to address recent research problems in nonlinear dynamical systems. The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems.
This book reports on the latest advances in and applications of memristors, memristive devices and systems. It gathers 20 contributed chapters by subject experts, including pioneers in the field such as Leon Chua (UC Berkeley, USA) and R.S. Williams (HP Labs, USA), who are specialized in the various topics addressed in this book, and covers broad areas of memristors and memristive devices such as: memristor emulators, oscillators, chaotic and hyperchaotic memristive systems, control of memristive systems, memristor-based min-max circuits, canonic memristors, memristive-based neuromorphic applications, implementation of memristor-based chaotic oscillators, inverse memristors, linear memristor devices, delayed memristive systems, flux-controlled memristive emulators, etc. Throughout the book, special emphasis is given to papers offering practical solutions and design, modeling, and implementation insights to address current research problems in memristors, memristive devices and systems. As such, it offers a valuable reference book on memristors and memristive devices for graduate students and researchers with a basic knowledge of electrical and control systems engineering.
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.
This book presents techniques and security challenges of chaotic systems and their use in cybersecurity. It presents the state-of-the-art and the latest discoveries in the field of chaotic systems and methods and proposes new models, practical solutions, and technological advances related to new chaotic dynamical systems. The book can be used as part of the bibliography of the following courses: - Cybersecurity - Cryptography - Networks and Communications Security - Nonlinear Circuits - Nonlinear Systems and Applications
This book presents techniques and security challenges of chaotic systems and their use in cybersecurity. It presents the state-of-the-art and the latest discoveries in the field of chaotic systems and methods and proposes new models, practical solutions, and technological advances related to new chaotic dynamical systems. The book can be used as part of the bibliography of the following courses: - Cybersecurity - Cryptography - Networks and Communications Security - Nonlinear Circuits - Nonlinear Systems and Applications
Nowadays, circuits, both linear and nonlinear, still remain the core components of most electronic devices and systems. As these systems, such as mechatronics, communications, cryptosystems and industrial electronics become more and more sophisticated, better functionality and reliability of these technologies require more intriguing use of nonlinear circuits. For this reason, the research in the topic of nonlinear circuits has already passed from the stage of using them as a tool for analog simulation of nonlinear dynamical systems to the stage of using them as the basic component in the aforementioned systems. It is a fact that the observation of chaotic phenomena in nonlinear circuits was and still remains one of the major motivations for studying the nonlinear circuit theory. In the previous two decades a number of workshops and conferences, journal issues, research monographs and books, were focused on analysis and studying chaotic phenomena in various nonlinear circuits. Also, nonlinear circuits were a field in which many chaotic phenomena have been observed for the first time. However, the nonlinear circuits have now passed from the traditional trend of studying and understanding chaos in a new research direction in the field of applied chaos technology. So, there is an increasing interest not only in the traditional chaos generation and analysis via circuitry but also in the new consideration of utilizing chaos in real physical systems. As a result, electronic engineers are really giving to chaos more and more attention and they use nonlinear circuits in an increasing number of engineering applications. This book aims to bridge the gap between these two research stages on the progress of nonlinear circuits and also open up some new directions of real applications where chaos can be put up to technological use, including secure communication systems, radio frequency operating circuits' design, memristors and cryptography. Finally, this book can serve as an updated and handy reference for university professors, graduate students, laboratory researchers as well as physicists and applied mathematicians who are interested in studying the chaos and its applications through the field of nonlinear circuits.
|
You may like...
At School in the World - Developing…
Carine E. Ullom, Nilufer Guler
Paperback
R1,046
Discovery Miles 10 460
Teacher Education - The Key to Effective…
Delbert Long, Rodney Riegle
Hardcover
R2,682
Discovery Miles 26 820
Performance-Based Assessment in 21st…
Kim K. Winter, Holly H. Pinter, …
Hardcover
R4,588
Discovery Miles 45 880
Radical Constructivism in Action…
Leslie P. Steffe, Patrick W. Thompson
Hardcover
R4,323
Discovery Miles 43 230
Teaching-Learning dynamics
Monica Jacobs, Ntombizolile Vakalisa, …
Paperback
Optimising New Modes of Assessment: In…
Mien Segers, F. Dochy, …
Hardcover
R4,264
Discovery Miles 42 640
|