Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
In recent years several improvements have been made in the manufacturing of resistive, superconducting and hybrid mag nets. Condensed matter physicists are nowadays doing ex periments in steady magnetic fields of up to 30 Tesla. But the field homogenity {/B}, required in a volume of the order of a 3 few cm is usually several orders of magnitude less severe than the one which is needed for high resolution NMR. Over the last 30 years, with each generation of new high resolution NMR spectrometers, from 100 MHz up to 600 MHz, taking advan tage of the increase in sensitivity and resolution, new areas of research have been opened in chemistry, physical chemistry and biochemistry. The generation of the 20 Tesla supercon ducting magnets is coming. Thus one may seriously start to consider high resolution NMR at 1 GHz. The purpose of this volume is to examine some of the advantages which can be obtained at such high frequencies and some of the problems we shall be facing. An important aspect of NMR at high field which is not presented in this volume concerns the design of the magnet. The building of a superconducting magnet, producing a field 10 3 higher than 20 T, with a field homogeneity IlB/B 10-, in a cm volume still remains today in 1990 a major challenge. Grenoble, France J. B. Robert Guest-Editor Professor J. B. Robert Service National des Champs Intenses B. P."
Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most powerful analytical techniques available in modern science, and is widely used by chemists, biochemists, physicists and physicians. Nuclear Magnetic Resonance: Concepts and Methods examines the physical and mathematical features of liquid state NMR spectroscopy which underpin the numerous important applications of the technique, before exploring these applications in depth. Detailed examples and figures presented throughout the text enable the student to understand conceptually challenging ideas. Advanced mathematical and quantum mechanical developments are presented in such a way that they can be skipped on a first reading, enabling the reader to concentrate on the key concepts underlying such important topics as Fourier Transform NMR spectroscopy, product-operator formalism, signal processing techniques and spin relaxation theory. In the concluding chapter, a survey of the major multipulse and multidimensional NMR techniques is given, including selective excitation, correlation spectroscopies and NMR imaging. Nuclear Magnetic Resonance: Concepts and Methods will be invaluable to graduate and undergraduate students, giving a clear understanding of the physical and mathematical background which underlies the many applications of this powerful and sophisticated technique. It will also be of great interest to more experienced researchers in the many fields where NMR spectroscopy is now routinely used.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|