![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
For 75 years the stopping of energetic ions in matter has been a subject of great theoretical and experimental interest. The theoretical treatment of the stopping of ions in matter is largely due to the work of Bohr, 1-3 Bethe,4-6 Bloch,7. s and Lindhard,9-12 and it has been reviewed by Bohr,3 Fano,13 17 20 Jackson,14 Sigmund,15 Ahlen,16 and Ziegler et al. - Soon after the discovery of energetic particle emission from radioactive materials, there was interest in how these corpuscles were slowed down in traversing matter. In 1900, Marie Curie stated 21 the hypothesis that Hies rayons alpha sont des projectiles materiels susceptibles de perdre de leur vitesse en travers ant la matiere. " Early attempts to evaluate this were incon- clusive for there was not yet an accurate proposed model of the atom. Enough experimental evidence was collected in the next decade to make stopping power theory one of the central concerns of those attempting to develop an atomic model. J. J. Thomson, director of the prestigious Cavendish Laboratory, and Niels Bohr, a fresh postdoctoral scientist at Rutherford's Manchester Laboratory, both published almost simultaneously22. 23 an analysis of the stopping of charged particles by matter, and each contained many of their divergent ideas on the model of an atom. Thomson ignored in his paper the Rutherford alpha-particle scattering 24 experiment of a year before. But the nuclear atom with a heavy positively 25 charged core was the basis of Bohr's ideas.
Quantum Mechanics -- Special Chapters is an important additional course for third-year students. Starting with the quantization of a free electromagnetic field and its interaction with matter, it discusses second quantization and interacting quantum fields. After re-normalization problems and a general treatment of nonrelativistic quantum field theory, these methods are applied to problems from solid-state physics and plasma physics: quantum gas, superfluidity, plasmons, and photons. The book concludes with an introduction to quantum statistics, the structure of atoms and molecules, and the Schrödinger wave equation formulated by Feynman path integrals. 72 fully and carefully worked examples and problems consolidate the material.
|
You may like...
Teaching and Learning about…
Irvin J. Levy, Catherine H. Middlecamp
Hardcover
R5,467
Discovery Miles 54 670
Managing IoT and Mobile Technologies…
Shuang Geng, Kris M y Law, …
Paperback
R1,165
Discovery Miles 11 650
|