Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Denis Noble Nearly a decade after completion of the first draft of the entire Human Genome sequence we are in a better position to assess the nature and the consequences of that heroic achievement, which can be seen as the culmination of the molecular biological revolution of the second half of the twentieth century. The achievement itself was celebrated at the highest levels (President and Prime Minister) on both sides of the Atlantic, and rightly so. DNA sequencing has become sufficiently c- mon now, even to the extent of being used in law courts, that it is easy to forget how technically difficult it was and how cleverly the sequencing teams solved those problems in the exciting race to finish by the turn of the century [1, 2]. The fanfares were misplaced, however, in an important respect. The metaphors used to describe the project and its biological significance gave the impression to the public at large, and to many scientists themselves, that this sequence would reveal the secrets of life. DNA had already been likened to a computer program [3]. The "genetic program" for life was therefore to be found in those sequences: A kind of map that had simply to be unfolded during development. The even more colo- ful "book of life" metaphor gave the promise that reading that book would lead to a veritable outpouring of new cures for diseases, hundreds of new drug targets, and a brave new world of medicine.
This book provides comprehensive information, both for clinicians and scientists, on the basic mechanisms, clinical features, and therapeutic approaches to epilepsy as an inflammatory disease. Inflammation has been for many years considered as an etiologic player (and a therapeutic target) for a specific group of epilepsies. However, it turns out that this concept underestimated the impact of inflammation in seizure disorders. Many accepted therapies for non-inflammatory epilepsies act in part as an inflammatory drug. The CNS actively responds to acute immune challenges by altering body temperature, stimulating the HPA axis, as well as up- and down-regulating specific sympathetic pathways.
Cell Cycle in the Central Nervous System overviews the changes in
cell cycle as they relate to prenatal and post natal brain
development, progression to neurological disease or tumor
formation.Topics covered range from the cell cycle during the
prenatal development of the mammalian central nervous system to
future directions in postnatal neurogenesis through gene transfer,
electrical stimulation, and stem cell introduction. Additional
chapters examine the postnatal development of neurons and glia, the
regulation of cell cycle in glia, and how that regulation may fail
in pretumor conditions or following a nonneoplastic CNS response to
injury. Highlights include treatments of the effects of deep brain
stimulation on brain development and repair; the connection between
the electrophysiological properties of neuroglia, cell cycle, and
tumor progression; and the varied immunological responses and their
regulation by cell cycle.
This book provides comprehensive information, both for clinicians and scientists, on the basic mechanisms, clinical features, and therapeutic approaches to epilepsy as an inflammatory disease. Inflammation has been for many years considered as an etiologic player (and a therapeutic target) for a specific group of epilepsies. However, it turns out that this concept underestimated the impact of inflammation in seizure disorders. Many accepted therapies for non-inflammatory epilepsies act in part as an inflammatory drug. The CNS actively responds to acute immune challenges by altering body temperature, stimulating the HPA axis, as well as up- and down-regulating specific sympathetic pathways.
Cell Cycle in the Central Nervous System overviews the changes in cell cycle as they relate to prenatal and post natal brain development, progression to neurological disease or tumor formation.Topics covered range from the cell cycle during the prenatal development of the mammalian central nervous system to future directions in postnatal neurogenesis through gene transfer, electrical stimulation, and stem cell introduction. Additional chapters examine the postnatal development of neurons and glia, the regulation of cell cycle in glia, and how that regulation may fail in pretumor conditions or following a nonneoplastic CNS response to injury. Highlights include treatments of the effects of deep brain stimulation on brain development and repair; the connection between the electrophysiological properties of neuroglia, cell cycle, and tumor progression; and the varied immunological responses and their regulation by cell cycle.
Denis Noble Nearly a decade after completion of the first draft of the entire Human Genome sequence we are in a better position to assess the nature and the consequences of that heroic achievement, which can be seen as the culmination of the molecular biological revolution of the second half of the twentieth century. The achievement itself was celebrated at the highest levels (President and Prime Minister) on both sides of the Atlantic, and rightly so. DNA sequencing has become sufficiently c- mon now, even to the extent of being used in law courts, that it is easy to forget how technically difficult it was and how cleverly the sequencing teams solved those problems in the exciting race to finish by the turn of the century [1, 2]. The fanfares were misplaced, however, in an important respect. The metaphors used to describe the project and its biological significance gave the impression to the public at large, and to many scientists themselves, that this sequence would reveal the secrets of life. DNA had already been likened to a computer program [3]. The "genetic program" for life was therefore to be found in those sequences: A kind of map that had simply to be unfolded during development. The even more colo- ful "book of life" metaphor gave the promise that reading that book would lead to a veritable outpouring of new cures for diseases, hundreds of new drug targets, and a brave new world of medicine.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|