Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.
Concise, engaging, and highly intuitive—this accessible guide equips you with an understanding of all the basic principles of forecasting Making accurate predictions about the economy has always been difficult, as F. A. Hayek noted when accepting his Nobel Prize in economics, but today forecasters have to contend with increasing complexity and unpredictable feedback loops. In this accessible and engaging guide, David Hendry, Michael Clements, and Jennifer Castle provide a concise and highly intuitive overview of the process and problems of forecasting. They explain forecasting concepts including how to evaluate forecasts, how to respond to forecast failures, and the challenges of forecasting accurately in a rapidly changing world. Topics covered include: What is a forecast? How are forecasts judged? And how can forecast failure be avoided? Concepts are illustrated using real-world examples including financial crises, the uncertainty of Brexit, and the Federal Reserve’s record on forecasting. This is an ideal introduction for university students studying forecasting, practitioners new to the field and for general readers interested in how economists forecast.
This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.
This book provides an introduction to econometrics through a thorough grounding in probability theory and statistical inference. The emphasis is on the concepts and ideas underlying probability theory and statistical inference, and on motivating the learning of them both at a formal and an intuitive level. By basing its approach on the underlying theory, it is able to cover fully the econometric theory required up to the intermediate level; its emphasis on mastering the concepts makes it an ideal introduction to the advanced texts and the econometric literature.
This book provides a wide-ranging account of the literature on co-integration and the modelling of integrated processes (those which accumulate the effects of past shocks). Data series which display integrated behaviour are common in economics, although techniques appropriate to analysing such data are of recent origin and there are few existing expositions of the literature. This book focuses on the exploration of relationships among integrated data series and the exploitation of these relationships in dynamic econometric modelling. The concepts of co-integration and error-correction models are fundamental components of the modelling strategy. This area of time-series econometrics has grown in importance over the past decade and is of interest to econometric theorists and applied econometricians alike. By explaining the important concepts informally, but also presenting them formally, the book bridges the gap between purely descriptive and purely theoretical accounts of the literature. The asymptotic theory of integrated processes is described and the tools provided by this theory are used to develop the distributions of estimators and test statistics. Practical modelling advice, and the use of techniques for systems estimation, are also emphasized. A knowledge of econometrics, statistics, and matrix algebra at the level of a final-year undergraduate or first-year undergraduate course in econometrics is sufficient for most of the book. Other mathematical tools are described as they occur.
|
You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
(1)
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
(11)
|