![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Emotional AI and Human-AI Interactions in Social Networking makes readers aware of recent progress in this integrated discipline. Filling the existing vacuum in research in artificial intelligence with the application of social science, this book provides in-depth knowledge of human-AI interactions with social networking and increased use of the internet. Chapters integrating Emotional Artificial Intelligence, examining behavioral interventions, compassion, education, and healthcare, as well as social cognitive networking, including social brain networks, play a pivotal role in enhancing interdisciplinary studies in the field of social neuroscience and Emotional AI. This volume is a must for those wanting to dive into this exciting field of social neuroscience AI.
Digital technology has enabled a number of internet-enabled devices that generate huge volumes of data from different systems. This large amount of heterogeneous data requires efficient data collection, processing, and analytical methods. Deep Learning is one of the latest efficient and feasible solutions that enable smart devices to function independently with a decision-making support system. Convergence of Deep Learning and Internet of Things: Computing and Technology contributes to technology and methodology perspectives in the incorporation of deep learning approaches in solving a wide range of issues in the IoT domain to identify, optimize, predict, forecast, and control emerging IoT systems. Covering topics such as data quality, edge computing, and attach detection and prediction, this premier reference source is a comprehensive resource for electricians, communications specialists, mechanical engineers, civil engineers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
Increase in consumer awareness of nutritional habits has placed automatic food analysis in the spotlight in recent years. However, food-logging is cumbersome and requires sufficient knowledge of the food item consumed. Additionally, keeping track of every meal can become a tedious task. Accurately documenting dietary caloric intake is crucial to manage weight loss, but also presents challenges because most of the current methods for dietary assessment must rely on memory to recall foods eaten. Food understanding from digital media has become a challenge with important applications in many different domains. Substantial research has demonstrated that digital imaging accurately estimates dietary intake in many environments and it has many advantages over other methods. However, how to derive the food information effectively and efficiently remains a challenging and open research problem. The provided recommendations could be based on calorie counting, healthy food and specific nutritional composition. In addition, if we also consider a system able to log the food consumed by every individual along time, it could provide health-related recommendations in the long-term. Computer Vision specialists have developed new methods for automatic food intake monitoring and food logging. Fourth Industrial Revolution [4.0 IR] technologies such as deep learning and computer vision robotics are key for sustainable food understanding. The need for AI based technologies that allow tracking of physical activities and nutrition habits are rapidly increasing and automatic analysis of food images plays an important role. Computer vision and image processing offers truly impressive advances to various applications like food analytics and healthcare analytics and can aid patients in keeping track of their calorie count easily by automating the calorie counting process. It can inform the user about the number of calories, proteins, carbohydrates, and other nutrients provided by each meal. The information is provided in real-time and thus proves to be an efficient method of nutrition tracking and can be shared with the dietician over the internet, reducing healthcare costs. This is possible by a system made up of, IoT sensors, Cloud-Fog based servers and mobile applications. These systems can generate data or images which can be analyzed using machine learning algorithms. Image Based Computing for Food and Health Analytics covers the current status of food image analysis and presents computer vision and image processing based solutions to enhance and improve the accuracy of current measurements of dietary intake. Many solutions are presented to improve the accuracy of assessment by analyzing health images, data and food industry based images captured by mobile devices. Key technique innovations based on Artificial Intelligence and deep learning-based food image recognition algorithms are also discussed. This book examines the usage of 4.0 industrial revolution technologies such as computer vision and artificial intelligence in the field of healthcare and food industry, providing a comprehensive understanding of computer vision and intelligence methodologies which tackles the main challenges of food and health processing. Additionally, the text focuses on the employing sustainable 4 IR technologies through which consumers can attain the necessary diet and nutrients and can actively monitor their health. In focusing specifically on the food industry and healthcare analytics, it serves as a single source for multidisciplinary information involving AI and vision techniques in the food and health sector. Current advances such as Industry 4.0 and Fog-Cloud based solutions are covered in full, offering readers a fully rounded view of these rapidly advancing health and food analysis systems.Â
Advances in Computational Techniques for Biomedical Image Analysis: Methods and Applications focuses on post-acquisition challenges such as image enhancement, detection of edges and objects, analysis of shape, quantification of texture and sharpness, and pattern analysis. It discusses the archiving and transfer of images, presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing. It examines various feature detection and segmentation techniques, together with methods for computing a registration or normalization transformation. Advances in Computational Techniques for Biomedical Image Analysis: Method and Applications is ideal for researchers and post graduate students developing systems and tools for health-care systems.
Digital technology has enabled a number of internet-enabled devices that generate huge volumes of data from different systems. This large amount of heterogeneous data requires efficient data collection, processing, and analytical methods. Deep Learning is one of the latest efficient and feasible solutions that enable smart devices to function independently with a decision-making support system. Convergence of Deep Learning and Internet of Things: Computing and Technology contributes to technology and methodology perspectives in the incorporation of deep learning approaches in solving a wide range of issues in the IoT domain to identify, optimize, predict, forecast, and control emerging IoT systems. Covering topics such as data quality, edge computing, and attach detection and prediction, this premier reference source is a comprehensive resource for electricians, communications specialists, mechanical engineers, civil engineers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
|
You may like...
Annual Meeting of the American Institute…
American Institute Of Instruction
Paperback
R420
Discovery Miles 4 200
Italian Cooking School: Vegetables
The Silver Spoon Kitchen
Paperback
New Directions in Law and Literature
Elizabeth S. Anker, Bernadette Meyler
Hardcover
R3,296
Discovery Miles 32 960
Linking EU Climate and Energy Policies…
Jon Birger Skjaerseth, Per Ove Eikeland, …
Hardcover
R3,571
Discovery Miles 35 710
|