Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.
Intelligent Autonomous Systems (IAS) are the physical embodiment of machine intelligence providing a core concept for integrating various advanced techno- gies with pattern recognition and learning. The basic philosophy of IAS research is to explore and understand the nature of intelligence in problems of perception, reasoning, learning and control in order to develop and implement the theory to engineered realization. In other words, the objective is to formulate various me- odologies for the development of robots which can operate autonomously and exhibit intelligent behavior by making appropriate decisions to perform the right task at the right time. Since IAS basically deals with the integration of machines, computing, sensing, and software to create intelligent systems capable of intera- ing with the complexities of the real world, advanced topics like soft computing, artificial life, evolutionary biology, and cognitive psychology have great promise in improving its intelligence and performance. Because of the inter-disciplinary character, the subject has several challenging issues for research, design and development covering a number of disciplines. These issues are further concerned with the development of both technology and methodology apart from various operations. The present research monograph titled "Intelligent Autonomous Systems: Foundations and Applications", edited by two renowned researchers, Professor Dilip K. Pratihar of IIT, Kharagpur, India and Professor Lakhmi C. Jain, Univ- sity of South Australia, Australia, provides a fairly representative cross-section of the activities that is going on all over the world in this area.
This book gathers outstanding papers presented at the International Conference on Advances in Materials and Manufacturing Engineering (ICAMME 2019), held at KIIT Deemed to be University, Bhubaneswar, India, from 15 to 17 March 2019. It covers theoretical and empirical developments in various areas of mechanical engineering, including manufacturing, production, machine design, fluid/thermal engineering, and materials.
This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.
This book gathers outstanding papers presented at the International Conference on Advances in Materials and Manufacturing Engineering (ICAMME 2019), held at KIIT Deemed to be University, Bhubaneswar, India, from 15 to 17 March 2019. It covers theoretical and empirical developments in various areas of mechanical engineering, including manufacturing, production, machine design, fluid/thermal engineering, and materials.
Intelligent Autonomous Systems (IAS) are the physical embodiment of machine intelligence providing a core concept for integrating various advanced techno- gies with pattern recognition and learning. The basic philosophy of IAS research is to explore and understand the nature of intelligence in problems of perception, reasoning, learning and control in order to develop and implement the theory to engineered realization. In other words, the objective is to formulate various me- odologies for the development of robots which can operate autonomously and exhibit intelligent behavior by making appropriate decisions to perform the right task at the right time. Since IAS basically deals with the integration of machines, computing, sensing, and software to create intelligent systems capable of intera- ing with the complexities of the real world, advanced topics like soft computing, artificial life, evolutionary biology, and cognitive psychology have great promise in improving its intelligence and performance. Because of the inter-disciplinary character, the subject has several challenging issues for research, design and development covering a number of disciplines. These issues are further concerned with the development of both technology and methodology apart from various operations. The present research monograph titled "Intelligent Autonomous Systems: Foundations and Applications", edited by two renowned researchers, Professor Dilip K. Pratihar of IIT, Kharagpur, India and Professor Lakhmi C. Jain, Univ- sity of South Australia, Australia, provides a fairly representative cross-section of the activities that is going on all over the world in this area.
|
You may like...
|