Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Over the last decades cell biology and biological chemistry have increasingly turned their attention to the space between cells and revealed an elaborate network of macromolecules essential for structural support, cell adhesion and signaling. This comprehensive handbook of the extracellular matrix will give an overview of the current state of knowledge of matrix components (structure and function), their role in heath and disease (matrix pathobiology) and new aspects related to pharmacological targeting. It will provide an introduction to the extracellular matrix and detailed sections and chapters on: Importance of extracellular matrix in health and disease Matrix proteoglycans (aggrecan, versican, perlecan, SLRPs, syndecans, glypicans, serglycin) Matrix proteinases (remodeling, would healing, regulatory roles in health and disease, metalloproteinases, cystein proteases, plasmin and plasminogen activator system) Glycobiology (hyaluronan and sulfated glycosaminoglycans in cancer, inflammation and metabolic control) Collagens (supramolecular assembly, proteins binding collagen, scaffolds, bacterial and mutated collagens, procollagen proteinases) Cell surface receptors (integrins, syndecans, mechanical strain and TGFb, CD44 and DDR). Biotechnological and pharmacological outlook (matrix regulation by growth factors, hyaluronidases, pathobiology, disease targeting, delivery systems, EMT and proteomics). "The book Extracellular Matrix: Pathobiology and Signaling provides a comprehensive and up to date collection of very relevant topics for understanding the various facets of extracellular matrix and its interactions with cells in normal tissue as well as in disease. It represents the current front-line and will serve as a reference for extracellular matrix and posttranslational modifications." Dick Heinegard, Department of Clinical Sciences Lund, Section Rheumatology, Lund University, Sweden
The integrin family is composed of 24 members and approximately ten years ago (2003) we published a book devoted to the nine I domain integrin subunits. In this second edition, I am pleased that most of the original authors have been able to contribute to the updated version. I domain containing integrins include collagen receptors and leukocyte receptors. In 2003 the knockout mouse phenotypes for all of the I domain integrins had not yet been published; they are now, and are summarized and discussed in this edition. Interestingly, a recent 10 integrin mutation in dogs has indicated that collagen-binding integrins in the musculoskeletal system might have much more severe phenotypes in larger animals/humans compared to the mild integrin phenotypes observed in collagen-binding integrin deficient mice. This finding is further discussed in the book. In the cancer field, the microenvironment is taking center stage, and here collagen receptors on fibroblasts are predicted to play important roles in paracrine signaling, in regulating tissue stiffness and matrix remodeling. New technologies, new mouse models in combination with analyses of I integrins in larger animals/humans are thus predicted to increase our knowledge about this group of receptors. With this in mind we look forward to another 10 years of research with I domain integrins.
Integrins are heterodimeric cell surface receptors which anchor cells to different extracellular matrix proteins or act as cell-cell receptors. They play pivotal roles not only across a wide range of physiological processes including tissue morphogenesis, wound healing, and regulation of cell growth, but also in numerous pathological conditions such as autoimmunity, infectious disease, and carcinogenesis. This book aims to provide readers a summary of the most important integrins and their respective biological functions. Readers will learn about knockout- and animal models to study the functionality of key collagen-, laminin-, and nephronectin-binding integrins. Additionally, the role of integrins in pathological tissue remodeling in joints and in developing and diseased cardiac tissue are discussed. Reviews of the current knowledge of the role of integrins in tissue and tumor fibrosis, angiogenesis and tumor progression are an important part of this work. Finally, the book discusses integrins in the context of the immune system, how to target integrin-ligand interactions with antibodies, and the role of integrins as receptors for bacterial and viral cell invasion. Both experienced researchers and clinicians, as well as PhD students who wish to study the extracellular matrix and cell adhesion molecules will find “Integrins in Health and Disease - Key Effectors of Cell-Matrix and Cell-Cell Interactions” authoritative, easily accessible, and vastly informative. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology and the International Society for Matrix Biology.
In vertebrates, the integrin family includes 24 members. As the
alpha-chains were sequenced, some were observed to have an inserted
domain similar to the A domain in several matrix and complement
proteins. This inserted ligand binding domain is interactive and
was called the I domain in integrins. More recently structural data
have shown that an integrin beta-chain also contains an I domain.
Nine of the currently known 18 alpha-chains contain an I domain.
The integrin family is composed of 24 members and approximately ten years ago (2003) we published a book devoted to the nine I domain integrin subunits. In this second edition, I am pleased that most of the original authors have been able to contribute to the updated version. I domain containing integrins include collagen receptors and leukocyte receptors. In 2003 the knockout mouse phenotypes for all of the I domain integrins had not yet been published; they are now, and are summarized and discussed in this edition. Interestingly, a recent 10 integrin mutation in dogs has indicated that collagen-binding integrins in the musculoskeletal system might have much more severe phenotypes in larger animals/humans compared to the mild integrin phenotypes observed in collagen-binding integrin deficient mice. This finding is further discussed in the book. In the cancer field, the microenvironment is taking center stage, and here collagen receptors on fibroblasts are predicted to play important roles in paracrine signaling, in regulating tissue stiffness and matrix remodeling. New technologies, new mouse models in combination with analyses of I integrins in larger animals/humans are thus predicted to increase our knowledge about this group of receptors. With this in mind we look forward to another 10 years of research with I domain integrins.
|
You may like...
|