Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
The Jackknife and bootstrap are the most popular data-resampling methods used in statistical analysis. This book provides a systematic introduction to the theory of the jackknife, bootstrap and other resampling methods that have been developed in the last twenty years. It aims to provide a guide to using these methods which will enable applied statisticians to feel comfortable in applying them to data in their own research. The authors have included examples of applying these methods in various applications in both the independent and identically distributed (iid) case and in more complicated cases with non-iid data sets. Readers are assumed to have a reasonable knowledge of mathematical statistics and so this will be made suitable reading for graduate students, researchers and practitioners seeking a wide-ranging survey of this important area of statistical theory and application.
The jackknife and bootstrap are the most popular data-resampling meth ods used in statistical analysis. The resampling methods replace theoreti cal derivations required in applying traditional methods (such as substitu tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further devel opments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems.
|
You may like...
|