Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Computational Intelligence is tolerant of imprecise information, partial truth and uncertainty. This book presents a selected collection of contributions on a focused treatment of important elements of CI, centred on its key element: learning. This book presents novel applications and real world applications working in Manufacturing and Engineering, and it sets a basis for understanding Domotic and Production Methods of the XXI Century.
This book illustrates the main characteristics, challenges and optimisation requirements of robotic disassembly. It provides a comprehensive insight on two crucial optimisation problems in the areas of robotic disassembly through a group of unified mathematical models. The online and offline optimisation of the operational sequence to dismantle a product, for example, is represented with a list of conflicting objectives and constraints. It allows the decision maker and the robots to match the situation automatically and efficiently. To identify a generic solution under different circumstances, classical metaheuristics that can be used for the optimisation of robotic disassembly are introduced in detail. A flexible framework is then presented to implement existing metaheuristics for sequence planning and line balancing in the circumstance of robotic disassembly. Optimisation of Robotic Disassembly for Remanufacturing provides practical case studies on typical product instances to help practitioners design efficient robotic disassembly with minimal manual operation, and offers comparisons of the state-of-the-art metaheuristics on solving the key optimisation problems. Therefore, it will be of interest to engineers, researchers, and postgraduate students in the area of remanufacturing.
Computational Intelligence is tolerant of imprecise information, partial truth and uncertainty. This book presents a selected collection of contributions on a focused treatment of important elements of CI, centred on its key element: learning. This book presents novel applications and real world applications working in Manufacturing and Engineering, and it sets a basis for understanding Domotic and Production Methods of the XXI Century.
This book illustrates the main characteristics, challenges and optimisation requirements of robotic disassembly. It provides a comprehensive insight on two crucial optimisation problems in the areas of robotic disassembly through a group of unified mathematical models. The online and offline optimisation of the operational sequence to dismantle a product, for example, is represented with a list of conflicting objectives and constraints. It allows the decision maker and the robots to match the situation automatically and efficiently. To identify a generic solution under different circumstances, classical metaheuristics that can be used for the optimisation of robotic disassembly are introduced in detail. A flexible framework is then presented to implement existing metaheuristics for sequence planning and line balancing in the circumstance of robotic disassembly. Optimisation of Robotic Disassembly for Remanufacturing provides practical case studies on typical product instances to help practitioners design efficient robotic disassembly with minimal manual operation, and offers comparisons of the state-of-the-art metaheuristics on solving the key optimisation problems. Therefore, it will be of interest to engineers, researchers, and postgraduate students in the area of remanufacturing.
This book is the first work dedicated to the Bees Algorithm. Following a gentle introduction to the main ideas underpinning the algorithm, the book presents recent results and developments relating to the algorithm and its application to optimisation problems in production and manufacturing. With the advent of the Fourth Industrial Revolution, production and manufacturing processes and systems have become more complex. To obtain the best performance from them requires efficient and effective optimisation techniques that do not depend on the availability of process or system models. Such models are usually either not obtainable or mathematically intractable due to the high degrees of nonlinearities and uncertainties in the processes and systems to be represented. The Bees Algorithm is a powerful swarm-based intelligent optimisation metaheuristic inspired by the foraging behaviour of honeybees. The algorithm is conceptually elegant and extremely easy to apply. All it needs to solve an optimisation problem is a means to evaluate the quality of potential solutions. This book demonstrates the simplicity, effectiveness and versatility of the algorithm and encourages its further adoption by engineers and researchers across the world to realise smart and sustainable manufacturing and production in the age of Industry 4.0 and beyond.
|
You may like...
|