Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Many electronic and acoustic signals can be modelled as sums of sinusoids and noise. However, the amplitudes, phases and frequencies of the sinusoids are often unknown and must be estimated in order to characterise the periodicity or near-periodicity of a signal and consequently to identify its source. This book presents and analyses several practical techniques used for such estimation. The problem of tracking slow frequency changes over time of a very noisy sinusoid is also considered. Rigorous analyses are presented via asymptotic or large sample theory, together with physical insight. The book focuses on achieving extremely accurate estimates when the signal to noise ratio is low but the sample size is large. Each chapter begins with a detailed overview, and many applications are given. Matlab code for the estimation techniques is also included. The book will thus serve as an excellent introduction and reference for researchers analysing such signals.
This book brings together the personal accounts and reflections of nineteen mathematical model-builders, whose specialty is probabilistic modelling. The reader may well wonder why, apart from personal interest, one should commission and edit such a collection of articles. There are, of course, many reasons, but perhaps the three most relevant are: (i) a philosophicaJ interest in conceptual models; this is an interest shared by everyone who has ever puzzled over the relationship between thought and reality; (ii) a conviction, not unsupported by empirical evidence, that probabilistic modelling has an important contribution to make to scientific research; and finally (iii) a curiosity, historical in its nature, about the complex interplay between personal events and the development of a field of mathematical research, namely applied probability. Let me discuss each of these in turn. Philosophical Abstraction, the formation of concepts, and the construction of conceptual models present us with complex philosophical problems which date back to Democritus, Plato and Aristotle. We have all, at one time or another, wondered just how we think; are our thoughts, concepts and models of reality approxim&tions to the truth, or are they simply functional constructs helping us to master our environment? Nowhere are these problems more apparent than in mathematical model ling, where idealized concepts and constructions replace the imperfect realities for which they stand."
Many electronic and acoustic signals can be modeled as sums of sinusoids and noise. However, the amplitudes, phases and frequencies of the sinusoids are often unknown and must be estimated in order to characterize the periodicity or near-periodicity of a signal and consequently to identify its source. Quinn and Hannan present and analyze several practical techniques used for such estimation. The problem of tracking slow frequency changes of a very noisy sinusoid over time is also considered. Rigorous analyses are presented via asymptotic or large sample theory, together with physical insight. The book focuses on achieving extremely accurate estimates when the signal to noise ratio is low but the sample size is large.
|
You may like...
|