![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Metric space topology, as the generalization to abstract spaces of the theory of sets of points on a line or in a plane, unifies many branches of classical analysis and is necessary introduction to functional analysis. Professor Copson's book, which is based on lectures given to third-year undergraduates at the University of St Andrews, provides a more leisurely treatment of metric spaces than is found in books on functional analysis, which are usually written at graduate student level. His presentation is aimed at the applications of the theory to classical algebra and analysis; in particular, the chapter on contraction mappings shows how it provides proof of many of the existence theorems in classical analysis.
In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its relevance in several important respects. Many branches of classical analysing have their origins in the rigourous discussion of problems in applies mathematics and theoretical physics, and the classical treatment of the theory of partial differential equations still provides the best method of treating many physical problems. A knowledge of the classical theory is essential for pure mathematics who intend to undertake research in this field, whatever approach they ultimately adopt. The numerical analyst needs a knowledge of classical theory in order to decide whether a problem has a unique solution or not.
Certain functions, capable of expansion only as a divergent series, may nevertheless be calculated with great accuracy by taking the sum of a suitable number of terms. The theory of such asymptotic expansions is of great importance in many branches of pure and applied mathematics and in theoretical physics. Solutions of ordinary differential equations are frequently obtained in the form of a definite integral or contour integral, and this tract is concerned with the asymptotic representation of a function of a real or complex variable defined in this way. After a preliminary account of the properties of asymptotic series, the standard methods of deriving the asymptotic expansion of an integral are explained in detail and illustrated by the expansions of various special functions. These methods include integration by parts, Laplace's approximation, Watson's lemma on Laplace transforms, the method of steepest descents, and the saddle-point method. The last two chapters deal with Airy's integral and uniform asymptotic expansions.
|
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Proceedings of the 2015 International…
Yong Qin, Limin Jia, …
Hardcover
R7,802
Discovery Miles 78 020
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Variable Structure Control of Complex…
Xinggang Yan, Sarah K. Spurgeon, …
Hardcover
|