Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,"thebranchof mathematical logic which deals with the relation between a formal language and its interpretations". No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero-one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.
Games provide mathematical models for interaction. Numerous tasks in computer science can be formulated in game-theoretic terms. This fresh and intuitive way of thinking through complex issues reveals underlying algorithmic questions and clarifies the relationships between different domains. This collection of lectures, by specialists in the field, provides an excellent introduction to various aspects of game theory relevant for applications in computer science that concern program design, synthesis, verification, testing and design of multi-agent or distributed systems. Originally devised for a Spring School organised by the GAMES Networking Programme in 2009, these lectures have since been revised and expanded, and range from tutorials concerning fundamental notions and methods to more advanced presentations of current research topics. This volume is a valuable guide to current research on game-based methods in computer science for undergraduate and graduate students. It will also interest researchers working in mathematical logic, computer science and game theory.
The annual conference of the European Association for Computer Science Logic (EACSL), CSL 2009, was held in Coimbra (Portugal), September 7-11, 2009. The conference series started as a programme of International Workshops on Computer Science Logic, and then at its sixth meeting became the Annual C- ference of the EACSL. This conference was the 23rd meeting and 18th EACSL conference; it was organized at the Department of Mathematics, Faculty of S- ence and Technology, University of Coimbra. In response to the call for papers, a total of 122 abstracts were submitted to CSL 2009of which 89 werefollowedby a full paper. The ProgrammeCommittee selected 34 papers for presentation at the conference and publication in these proceedings. The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in Computer Science. The awardrecipient for 2009 was Jakob Nordstr om. Citation of the award, abstract of the thesis, and a biographical sketch of the recipient may be found at the end of the proceedings. The award was sponsored for the years 2007-2009 by Logitech S.A.
A central aim and ever-lasting dream of computer science is to put the development of hardware and software systems on a mathematical basis which is both firm and practical. Such a scientific foundation is needed especially for the construction of reactive programs, like communication protocols or control systems. For the construction and analysis of reactive systems an elegant and powerful theory has been developed based on automata theory, logical systems for the specification of nonterminating behavior, and infinite two-person games. The 19 chapters presented in this multi-author monograph give a consolidated overview of the research results achieved in the theory of automata, logics, and infinite games during the past 10 years. Special emphasis is placed on coherent style, complete coverage of all relevant topics, motivation, examples, justification of constructions, and exercises.
This is the most comprehensive treatment available in book form of the classical decision problem of mathematical logic and of the role of the classical decision problem in modern computer science. A revealing analysis of the natural order of decidable and undecidable cases is given. The complete classification of the solvable and unsolvable standard cases of the classical decision problem will be of particular interest to the reader. The classification comes complete with the complexity analysis of the solvable cases, with the comprehensive treatment of the reduction method, and with the model-theoretical analysis of solvable cases. Many cases are treated here for the first time, and a great number of simple proofs and exercises have been included. The results and methods of the book are extensively used in logic, computer science and artificial intelligence.
Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,"thebranchof mathematical logic which deals with the relation between a formal language and its interpretations". No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero-one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.
|
You may like...
|