Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 21 of 21 matches in All Departments
This book is a collection of representative and novel works done in Data Mining, Knowledge Discovery, Clustering and Classification that were originally presented in French at the EGC'2012 Conference held in Bordeaux, France, on January 2012. This conference was the 12th edition of this event, which takes place each year and which is now successful and well-known in the French-speaking community. This community was structured in 2003 by the foundation of the French-speaking EGC society (EGC in French stands for Extraction et Gestion des Connaissances'' and means Knowledge Discovery and Management'', or KDM). This book is intended to be read by all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. The book is structured in two parts called Knowledge Discovery and Data Mining'' and Classification and Feature Extraction or Selection''. The first part (6 chapters) deals with data clustering and data mining. The three remaining chapters of the second part are related to classification and feature extraction or feature selection.
This book presents a collection of representative and novel work in the field of data mining, knowledge discovery, clustering and classification, based on expanded and reworked versions of a selection of the best papers originally presented in French at the EGC 2014 and EGC 2015 conferences held in Rennes (France) in January 2014 and Luxembourg in January 2015. The book is in three parts: The first four chapters discuss optimization considerations in data mining. The second part explores specific quality measures, dissimilarities and ultrametrics. The final chapters focus on semantics, ontologies and social networks. Written for PhD and MSc students, as well as researchers working in the field, it addresses both theoretical and practical aspects of knowledge discovery and management.
During the last decade, the French-speaking scientific community developed a very strong research activity in the field of Knowledge Discovery and Management (KDM or EGC for "Extraction et Gestion des Connaissances" in French), which is concerned with, among others, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and SemanticWeb. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2009 Conference held in Strasbourg, France on January 2009. The volume is organized in four parts. Part I includes five papers concerned by various aspects of supervised learning or information retrieval. Part II presents five papers concerned with unsupervised learning issues. Part III includes two papers on data streaming and two on security while in Part IV the last four papers are concerned with ontologies and semantic.
This book is a collection of representative and novel works done in Data Mining, Knowledge Discovery, Clustering and Classification that were originally presented in French at the EGC'2013 (Toulouse, France, January 2013) and EGC'2014 Conferences (Rennes, France, January 2014). These conferences were respectively the 13th and 14th editions of this event, which takes place each year and which is now successful and well-known in the French-speaking community. This community was structured in 2003 by the foundation of the French-speaking EGC society (EGC in French stands for "Extraction et Gestion des Connaissances" and means "Knowledge Discovery and Management", or KDM). This book is aiming at all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. The book is structured in two parts called "Applications of KDM to real datasets" and "Foundations of KDM".
Statistical implicative analysis is a data analysis method created by Regis Gras almost thirty years ago which has a significant impact on a variety of areas ranging from pedagogical and psychological research to data mining. Statistical implicative analysis (SIA) provides a framework for evaluating the strength of implications; such implications are formed through common knowledge acquisition techniques in any learning process, human or artificial. This new concept has developed into a unifying methodology, and has generated a powerful convergence of thought between mathematicians, statisticians, psychologists, specialists in pedagogy and last, but not least, computer scientists specialized in data mining. This volume collects significant research contributions of several rather distinct disciplines that benefit from SIA. Contributions range from psychological and pedagogical research, bioinformatics, knowledge management, and data mining.
This book highlights novel research in Knowledge Discovery and Management (KDM), gathering the extended, peer-reviewed versions of outstanding papers presented at the annual conferences EGC'2017 & EGC'2018. The EGC conference cycle was founded by the International French-speaking EGC society ("Extraction et Gestion des Connaissances") in 2003, and has since become a respected fixture among the French-speaking community. In addition to the annual conference, the society organizes various other events in order to promote exchanges between researchers and companies concerned with KDM and its applications to business, administration, industry and public organizations. Addressing novel research in data science, semantic Web, clustering, and classification, the content presented here will chiefly benefit researchers interested in these fields, including Ph.D./M.Sc. students, at public and private laboratories alike.
The recent and novel research contributions collected in this
book are extended and
During the last decade, Knowledge Discovery and Management (KDM or, in French, EGC for Extraction et Gestion des connaissances) has been an intensive and fruitful research topic in the French-speaking scientific community. In 2003, this enthusiasm for KDM led to the foundation of a specific French-speaking association, called EGC, dedicated to supporting and promoting this topic. More precisely, KDM is concerned with the interface between knowledge and data such as, among other things, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and Semantic Web. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2010 Conference held in Tunis, Tunisia in January 2010. The volume is organized in three parts. Part I includes four chapters concerned with various aspects of Data Cube and Ontology-based representations. Part II is composed of four chapters concerned with Efficient Pattern Mining issues, while in Part III the last four chapters address Data Preprocessing and Information Retrieval.
This book is a collection of high scientific novel contributions addressing several of these challenges. These articles are extended versions of a selection of the best papers that were initially presented at the French-speaking conferences EGC'2019held in Metz (France, January 21-25, 2019). These extended versions have been accepted after an additional peer-review process among papers already accepted in long format at the conference. Concerning the conference, the long and short papers selection were also the result of a double blind peer review process among the hundreds of papers initially submitted to each edition of the conference (acceptance rate for long papers is about 25%.
This book is a collection of representative and novel works in the field of data mining, knowledge discovery, clustering and classification. Discussing both theoretical and practical aspects of "Knowledge Discovery and Management" (KDM), it is intended for researchers interested in these fields, including PhD and MSc students, and researchers from public or private laboratories. The contributions included are extended and reworked versions of six of the best papers that were originally presented in French at the EGC'2016 conference held in Reims (France) in January 2016. This was the 16th edition of this successful conference, which takes place each year, and also featured workshops and other events with the aim of promoting exchanges between researchers and companies concerned with KDM and its applications in business, administration, industry and public organizations. For more details about the EGC society, please consult egc.asso.fr.
This book presents recent advances in quality measures in data mining.
This book comprises a distinguished collection of cutting-edge scientific contributions. Encompassing a wide range of subjects, it delves into machine learning, data mining, text analysis, data visualization, knowledge management, and more. The included articles are expanded versions of carefully selected top papers that were originally presented at the EGC’2020 conferences held in Paris (France, January 27-31, 2020).  It is intended for researchers interested in these fields, including PhD and MSc students, and researchers from public or private laboratories. These extended versions underwent an additional peer-review process, building upon the already accepted long-format papers from the conference. The selection of long and short papers for the conference itself followed a rigorous double-blind peer-review process, evaluating numerous submissions (with a long paper acceptance rate of approximately 25%). For more details about the EGC society, please consult egc.asso.fr."
This book presents a collection of representative and novel work in the field of data mining, knowledge discovery, clustering and classification, based on expanded and reworked versions of a selection of the best papers originally presented in French at the EGC 2014 and EGC 2015 conferences held in Rennes (France) in January 2014 and Luxembourg in January 2015. The book is in three parts: The first four chapters discuss optimization considerations in data mining. The second part explores specific quality measures, dissimilarities and ultrametrics. The final chapters focus on semantics, ontologies and social networks. Written for PhD and MSc students, as well as researchers working in the field, it addresses both theoretical and practical aspects of knowledge discovery and management.
This book is a collection of representative and novel works done in Data Mining, Knowledge Discovery, Clustering and Classification that were originally presented in French at the EGC'2013 (Toulouse, France, January 2013) and EGC'2014 Conferences (Rennes, France, January 2014). These conferences were respectively the 13th and 14th editions of this event, which takes place each year and which is now successful and well-known in the French-speaking community. This community was structured in 2003 by the foundation of the French-speaking EGC society (EGC in French stands for "Extraction et Gestion des Connaissances" and means "Knowledge Discovery and Management", or KDM). This book is aiming at all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. The book is structured in two parts called "Applications of KDM to real datasets" and "Foundations of KDM".
This book is a collection of representative and novel works done in Data Mining, Knowledge Discovery, Clustering and Classification that were originally presented in French at the EGC'2012 Conference held in Bordeaux, France, on January 2012. This conference was the 12th edition of this event, which takes place each year and which is now successful and well-known in the French-speaking community. This community was structured in 2003 by the foundation of the French-speaking EGC society (EGC in French stands for ``Extraction et Gestion des Connaissances'' and means ``Knowledge Discovery and Management'', or KDM). This book is intended to be read by all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. The book is structured in two parts called ``Knowledge Discovery and Data Mining'' and ``Classification and Feature Extraction or Selection''. The first part (6 chapters) deals with data clustering and data mining. The three remaining chapters of the second part are related to classification and feature extraction or feature selection.
The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC'2011 Conference held in Brest, France, on January 2011. EGC stands for "Extraction et Gestion des connaissances" in French, and means "Knowledge Discovery and Management" or KDM. KDM is concerned with the works in computer science at the interface between data and knowledge; such as Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and Semantic Web. This book is intended to be read by all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. This book has been structured in two parts. The first part, entitled "Data Mining, classification and queries", deals with rule and pattern mining, with topological approaches and with OLAP. The second part of the book, entitled "Ontology and Semantic", is related to knowledge-based and user-centered approaches in KDM.
During the last decade, Knowledge Discovery and Management (KDM or, in French, EGC for Extraction et Gestion des connaissances) has been an intensive and fruitful research topic in the French-speaking scientific community. In 2003, this enthusiasm for KDM led to the foundation of a specific French-speaking association, called EGC, dedicated to supporting and promoting this topic. More precisely, KDM is concerned with the interface between knowledge and data such as, among other things, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and Semantic Web. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2010 Conference held in Tunis, Tunisia in January 2010. The volume is organized in three parts. Part I includes four chapters concerned with various aspects of Data Cube and Ontology-based representations. Part II is composed of four chapters concerned with Efficient Pattern Mining issues, while in Part III the last four chapters address Data Preprocessing and Information Retrieval.
During the last decade, the French-speaking scientific community developed a very strong research activity in the field of Knowledge Discovery and Management (KDM or EGC for "Extraction et Gestion des Connaissances" in French), which is concerned with, among others, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and SemanticWeb. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2009 Conference held in Strasbourg, France on January 2009. The volume is organized in four parts. Part I includes five papers concerned by various aspects of supervised learning or information retrieval. Part II presents five papers concerned with unsupervised learning issues. Part III includes two papers on data streaming and two on security while in Part IV the last four papers are concerned with ontologies and semantic.
Statistical implicative analysis is a data analysis method created by Regis Gras almost thirty years ago which has a significant impact on a variety of areas ranging from pedagogical and psychological research to data mining. Statistical implicative analysis (SIA) provides a framework for evaluating the strength of implications; such implications are formed through common knowledge acquisition techniques in any learning process, human or artificial. This new concept has developed into a unifying methodology, and has generated a powerful convergence of thought between mathematicians, statisticians, psychologists, specialists in pedagogy and last, but not least, computer scientists specialized in data mining. This volume collects significant research contributions of several rather distinct disciplines that benefit from SIA. Contributions range from psychological and pedagogical research, bioinformatics, knowledge management, and data mining.
This book presents recent advances in quality measures in data mining.
This book highlights novel research in Knowledge Discovery and Management (KDM), gathering the extended, peer-reviewed versions of outstanding papers presented at the annual conferences EGC'2017 & EGC'2018. The EGC conference cycle was founded by the International French-speaking EGC society ("Extraction et Gestion des Connaissances") in 2003, and has since become a respected fixture among the French-speaking community. In addition to the annual conference, the society organizes various other events in order to promote exchanges between researchers and companies concerned with KDM and its applications to business, administration, industry and public organizations. Addressing novel research in data science, semantic Web, clustering, and classification, the content presented here will chiefly benefit researchers interested in these fields, including Ph.D./M.Sc. students, at public and private laboratories alike.
|
You may like...
Song For Sarah - Lessons From My Mother
Jonathan Jansen, Naomi Jansen
Hardcover
(3)
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
|