Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.
Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environments. This requires effective methods for dealing with dynamic backgrounds and illumination changes as well as algorithms that must meet real-time and low memory requirements. Incorporating both established and new ideas, Background Modeling and Foreground Detection for Video Surveillance provides a complete overview of the concepts, algorithms, and applications related to background modeling and foreground detection. Leaders in the field address a wide range of challenges, including camera jitter and background subtraction. The book presents the top methods and algorithms for detecting moving objects in video surveillance. It covers statistical models, clustering models, neural networks, and fuzzy models. It also addresses sensors, hardware, and implementation issues and discusses the resources and datasets required for evaluating and comparing background subtraction algorithms. The datasets and codes used in the text, along with links to software demonstrations, are available on the bookâs website. A one-stop resource on up-to-date models, algorithms, implementations, and benchmarking techniques, this book helps researchers and industry developers understand how to apply background models and foreground detection methods to video surveillance and related areas, such as optical motion capture, multimedia applications, teleconferencing, video editing, and humanâcomputer interfaces. It can also be used in graduate courses on computer vision, image processing, real-time architecture, machine learning, or data mining.
Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environments. This requires effective methods for dealing with dynamic backgrounds and illumination changes as well as algorithms that must meet real-time and low memory requirements. Incorporating both established and new ideas, Background Modeling and Foreground Detection for Video Surveillance provides a complete overview of the concepts, algorithms, and applications related to background modeling and foreground detection. Leaders in the field address a wide range of challenges, including camera jitter and background subtraction. The book presents the top methods and algorithms for detecting moving objects in video surveillance. It covers statistical models, clustering models, neural networks, and fuzzy models. It also addresses sensors, hardware, and implementation issues and discusses the resources and datasets required for evaluating and comparing background subtraction algorithms. The datasets and codes used in the text, along with links to software demonstrations, are available on the book's website. A one-stop resource on up-to-date models, algorithms, implementations, and benchmarking techniques, this book helps researchers and industry developers understand how to apply background models and foreground detection methods to video surveillance and related areas, such as optical motion capture, multimedia applications, teleconferencing, video editing, and human-computer interfaces. It can also be used in graduate courses on computer vision, image processing, real-time architecture, machine learning, or data mining.
Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.
The two volume sets LNCS 8033 and 8034 constitutes the refereed proceedings of the 9th International Symposium on Visual Computing, ISVC 2013, held in Rethymnon, Crete, Greece, in July 2013. The 63 revised full papers and 35 poster papers presented together with 32 special track papers were carefully reviewed and selected from more than 220 submissions. The papers are organized in topical sections: Part I (LNCS 8033) comprises computational bioimaging; computer graphics; motion, tracking and recognition; segmentation; visualization; 3D mapping, modeling and surface reconstruction; feature extraction, matching and recognition; sparse methods for computer vision, graphics and medical imaging; and face processing and recognition. Part II (LNCS 8034) comprises topics such as visualization; visual computing with multimodal data streams; visual computing in digital cultural heritage; intelligent environments: algorithms and applications; applications and virtual reality.
The two volume sets LNCS 8033 and 8034 constitutes the refereed proceedings of the 9th International Symposium on Visual Computing, ISVC 2013, held in Rethymnon, Crete, Greece, in July 2013. The 63 revised full papers and 35 poster papers presented together with 32 special track papers were carefully reviewed and selected from more than 220 submissions. The papers are organized in topical sections: Part I (LNCS 8033) comprises computational bioimaging; computer graphics; motion, tracking and recognition; segmentation; visualization; 3D mapping, modeling and surface reconstruction; feature extraction, matching and recognition; sparse methods for computer vision, graphics and medical imaging; face processing and recognition. Part II (LNCS 8034) comprises topics such as visualization; visual computing with multimodal data streams; visual computing in digital cultural heritage; intelligent environments: algorithms and applications; applications; virtual reality.
The two volume set LNCS 10072 and LNCS 10073 constitutes the refereed proceedings of the 12th International Symposium on Visual Computing, ISVC 2016, held in Las Vegas, NV, USA in December 2016. The 102 revised full papers and 34 poster papers presented in this book were carefully reviewed and selected from 220 submissions. The papers are organized in topical sections: Part I (LNCS 10072) comprises computational bioimaging; computer graphics; motion and tracking; segmentation; pattern recognition; visualization; 3D mapping; modeling and surface reconstruction; advancing autonomy for aerial robotics; medical imaging; virtual reality; computer vision as a service; visual perception and robotic systems; and biometrics. Part II (LNCS 9475): applications; visual surveillance; computer graphics; and virtual reality.
The two volume set LNCS 10072 and LNCS 10073 constitutes the refereed proceedings of the 12th International Symposium on Visual Computing, ISVC 2016, held in Las Vegas, NV, USA in December 2016. The 102 revised full papers and 34 poster papers presented in this book were carefully reviewed and selected from 220 submissions. The papers are organized in topical sections: Part I (LNCS 10072) comprises computational bioimaging; computer graphics; motion and tracking; segmentation; pattern recognition; visualization; 3D mapping; modeling and surface reconstruction; advancing autonomy for aerial robotics; medical imaging; virtual reality; computer vision as a service; visual perception and robotic systems; and biometrics. Part II (LNCS 9475): applications; visual surveillance; computer graphics; and virtual reality.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|