Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book presents the technical program of the International Embedded Systems Symposium (IESS) 2009. Timely topics, techniques and trends in embedded system design are covered by the chapters in this volume, including modelling, simulation, verification, test, scheduling, platforms and processors. Particular emphasis is paid to automotive systems and wireless sensor networks. Sets of actual case studies in the area of embedded system design are also included. Over recent years, embedded systems have gained an enormous amount of proce- ing power and functionality and now enter numerous application areas, due to the fact that many of the formerly external components can now be integrated into a single System-on-Chip. This tendency has resulted in a dramatic reduction in the size and cost of embedded systems. As a unique technology, the design of embedded systems is an essential element of many innovations. Embedded systems meet their performance goals, including real-time constraints, through a combination of special-purpose hardware and software components tailored to the system requirements. Both the development of new features and the reuse of existing intellectual property components are essential to keeping up with ever more demanding customer requirements. Furthermore, design complexities are steadily growing with an increasing number of components that have to cooperate properly. Embedded system designers have to cope with multiple goals and constraints simul- neously, including timing, power, reliability, dependability, maintenance, packaging and, last but not least, price.
As almost no other technology, embedded systems is an essential element of many innovations in automotive engineering. New functions and improvements of already existing functions, as well as the compliance with traffic regulations and customer requirements, have only become possible by the increasing use of electronic systems, especially in the fields of driving, safety, reliability, and functionality. Along with the functionalities that increase in number and have to cooperate, the complexity of the entire system will increase. Synergy effects resulting from distributed application functionalities via several electronic control devies, exchanging information through the network brings about more complex system architectures with many different sub-networks, operating with different velocities and different protocol implementations. To manage the increasing complexity of these systems, a deterministic behaviour of the control units and the communication network must be provided for, in particular when dealing with a distributed functionality. From Specification to Embedded Systems Application documents recent approaches and results presented at the International Embedded Systems Symposium (IESS 2005), which was held in August 2005 in Manaus (Brazil) and sponsored by the International Federation for Information Processing (IFIP). The topics which have been chosen for this working conference
are very timely: design methodology, modeling, specification,
software synthesis, power management, formal verification, testing,
network, communication systems, distributed control systems,
resource management and special aspects in system design.
st This volume contains the proceedings of two conferences held as part of the 21 IFIP World Computer Congress in Brisbane, Australia, 20-23 September 2010. th The first part of the book presents the proceedings of DIPES 2010, the 7 IFIP Conference on Distributed and Parallel Embedded Systems. The conference, int- duced in a separate preface by the Chairs, covers a range of topics from specification and design of embedded systems through to dependability and fault tolerance. rd The second part of the book contains the proceedings of BICC 2010, the 3 IFIP Conference on Biologically-Inspired Collaborative Computing. The conference is concerned with emerging techniques from research areas such as organic computing, autonomic computing and self-adaptive systems, where inspiraton for techniques - rives from exhibited behaviour in nature and biology. Such techniques require the use of research developed by the DIPES community in supporting collaboration over multiple systems. We hope that the combination of the two proceedings will add value for the reader and advance our related work.
Embedded systems are becoming one of the major driving forces in computer science. Furthermore, it is the impact of embedded information technology that dictates the pace in most engineering domains. Nearly all technical products above a certain level of complexity are not only controlled but increasingly even dominated by their embedded computer systems. Traditionally, such embedded control systems have been implemented in a monolithic, centralized way. Recently, distributed solutions are gaining increasing importance. In this approach, the control task is carried out by a number of controllers distributed over the entire system and connected by some interconnect network, like fieldbuses. Such a distributed embedded system may consist of a few controllers up to several hundred, as in today's top-range automobiles. Distribution and parallelism in embedded systems design increase the engineering challenges and require new development methods and tools. This book is the result of the International Workshop on Distributed and Parallel Embedded Systems (DIPES'98), organized by the International Federation for Information Processing (IFIP) Working Groups 10.3 (Concurrent Systems) and 10.5 (Design and Engineering of Electronic Systems). The workshop took place in October 1998 in Schloss Eringerfeld, near Paderborn, Germany, and the resulting book reflects the most recent points of view of experts from Brazil, Finland, France, Germany, Italy, Portugal, and the USA. The book is organized in six chapters: `Formalisms for Embedded System Design': IP-based system design and various approaches to multi-language formalisms. `Synthesis from Synchronous/Asynchronous Specification': Synthesis techniques based on Message Sequence Charts (MSC), StateCharts, and Predicate/Transition Nets. `Partitioning and Load-Balancing': Application in simulation models and target systems. <`Verification and Validation': Formal techniques for precise verification and more pragmatic approaches to validation. `Design Environments' for distributed embedded systems and their impact on the industrial state of the art. `Object Oriented Approaches': Impact of OO-techniques on distributed embedded systems. GBP/LISTGBP This volume will be essential reading for computer science researchers and application developers.
Design frameworks have become an important infrastructure for building complex design systems. Electronic Design Automation Frameworks presents a state-of-the-art review of the latest research results covering this topic; results which are also of value for other design frameworks. The book contains the selected proceedings of the Fourth International Working Conference on Electronic Design Frameworks, organized by the International Federation for Information Processing and held in Gramado, Brazil, in November 1994.
In the world of information technology, it is no longer the computer in the classical sense where the majority of IT applications is executed; computing is everywhere. More than 20 billion processors have already been fabricated and the majority of them can be assumed to still be operational. At the same time, virtually every PC worldwide is connected via the Internet. This combination of traditional and embedded computing creates an artifact of a complexity, heterogeneity, and volatility unmanageable by classical means. Each of our technical artifacts with a built-in processor can be seen as a ''Thing that Thinks," a term introduced by MIT's Thinglab. It can be expected that in the near future these billions of Things that Think will become an ''Internet of Things," a term originating from ETH Zurich. This means that we will be constantly surrounded by a virtual "organism" of Things that Think. This organism needs novel, adequate design, evolution, and management means which is also one of the core challenges addressed by the recent German priority research program on Organic Computing.
st This volume contains the proceedings of two conferences held as part of the 21 IFIP World Computer Congress in Brisbane, Australia, 20-23 September 2010. th The first part of the book presents the proceedings of DIPES 2010, the 7 IFIP Conference on Distributed and Parallel Embedded Systems. The conference, int- duced in a separate preface by the Chairs, covers a range of topics from specification and design of embedded systems through to dependability and fault tolerance. rd The second part of the book contains the proceedings of BICC 2010, the 3 IFIP Conference on Biologically-Inspired Collaborative Computing. The conference is concerned with emerging techniques from research areas such as organic computing, autonomic computing and self-adaptive systems, where inspiraton for techniques - rives from exhibited behaviour in nature and biology. Such techniques require the use of research developed by the DIPES community in supporting collaboration over multiple systems. We hope that the combination of the two proceedings will add value for the reader and advance our related work.
Design frameworks have become an important infrastructure for building complex design systems. Electronic Design Automation Frameworks presents a state-of-the-art review of the latest research results covering this topic; results which are also of value for other design frameworks. The book contains the selected proceedings of the Fourth International Working Conference on Electronic Design Frameworks, organized by the International Federation for Information Processing and held in Gramado, Brazil, in November 1994.
Embedded systems are becoming one of the major driving forces in computer science. Furthermore, it is the impact of embedded information technology that dictates the pace in most engineering domains. Nearly all technical products above a certain level of complexity are not only controlled but increasingly even dominated by their embedded computer systems. Traditionally, such embedded control systems have been implemented in a monolithic, centralized way. Recently, distributed solutions are gaining increasing importance. In this approach, the control task is carried out by a number of controllers distributed over the entire system and connected by some interconnect network, like fieldbuses. Such a distributed embedded system may consist of a few controllers up to several hundred, as in today's top-range automobiles. Distribution and parallelism in embedded systems design increase the engineering challenges and require new development methods and tools. This book is the result of the International Workshop on Distributed and Parallel Embedded Systems (DIPES'98), organized by the International Federation for Information Processing (IFIP) Working Groups 10.3 (Concurrent Systems) and 10.5 (Design and Engineering of Electronic Systems). The workshop took place in October 1998 in Schloss Eringerfeld, near Paderborn, Germany, and the resulting book reflects the most recent points of view of experts from Brazil, Finland, France, Germany, Italy, Portugal, and the USA. The book is organized in six chapters: `Formalisms for Embedded System Design': IP-based system design and various approaches to multi-language formalisms. `Synthesis from Synchronous/Asynchronous Specification': Synthesis techniques based on Message Sequence Charts (MSC), StateCharts, and Predicate/Transition Nets. `Partitioning and Load-Balancing': Application in simulation models and target systems. <`Verification and Validation': Formal techniques for precise verification and more pragmatic approaches to validation. `Design Environments' for distributed embedded systems and their impact on the industrial state of the art. `Object Oriented Approaches': Impact of OO-techniques on distributed embedded systems. GBP/LISTGBP This volume will be essential reading for computer science researchers and application developers.
This book presents the technical program of the International Embedded Systems Symposium (IESS) 2009. Timely topics, techniques and trends in embedded system design are covered by the chapters in this volume, including modelling, simulation, verification, test, scheduling, platforms and processors. Particular emphasis is paid to automotive systems and wireless sensor networks. Sets of actual case studies in the area of embedded system design are also included. Over recent years, embedded systems have gained an enormous amount of proce- ing power and functionality and now enter numerous application areas, due to the fact that many of the formerly external components can now be integrated into a single System-on-Chip. This tendency has resulted in a dramatic reduction in the size and cost of embedded systems. As a unique technology, the design of embedded systems is an essential element of many innovations. Embedded systems meet their performance goals, including real-time constraints, through a combination of special-purpose hardware and software components tailored to the system requirements. Both the development of new features and the reuse of existing intellectual property components are essential to keeping up with ever more demanding customer requirements. Furthermore, design complexities are steadily growing with an increasing number of components that have to cooperate properly. Embedded system designers have to cope with multiple goals and constraints simul- neously, including timing, power, reliability, dependability, maintenance, packaging and, last but not least, price.
As almost no other technology, embedded systems is an essential element of many innovations in automotive engineering. New functions and improvements of already existing functions, as well as the compliance with traffic regulations and customer requirements, have only become possible by the increasing use of electronic systems, especially in the fields of driving, safety, reliability, and functionality. Along with the functionalities that increase in number and have to cooperate, the complexity of the entire system will increase. Synergy effects resulting from distributed application functionalities via several electronic control devies, exchanging information through the network brings about more complex system architectures with many different sub-networks, operating with different velocities and different protocol implementations. To manage the increasing complexity of these systems, a deterministic behaviour of the control units and the communication network must be provided for, in particular when dealing with a distributed functionality. From Specification to Embedded Systems Application documents recent approaches and results presented at the International Embedded Systems Symposium (IESS 2005), which was held in August 2005 in Manaus (Brazil) and sponsored by the International Federation for Information Processing (IFIP). The topics which have been chosen for this working conference
are very timely: design methodology, modeling, specification,
software synthesis, power management, formal verification, testing,
network, communication systems, distributed control systems,
resource management and special aspects in system design.
In the world of information technology, it is no longer the computer in the classical sense where the majority of IT applications is executed; computing is everywhere. More than 20 billion processors have already been fabricated and the majority of them can be assumed to still be operational. At the same time, virtually every PC worldwide is connected via the Internet. This combination of traditional and embedded computing creates an artifact of a complexity, heterogeneity, and volatility unmanageable by classical means. Each of our technical artifacts with a built-in processor can be seen as a ''Thing that Thinks," a term introduced by MIT's Thinglab. It can be expected that in the near future these billions of Things that Think will become an ''Internet of Things," a term originating from ETH Zurich. This means that we will be constantly surrounded by a virtual "organism" of Things that Think. This organism needs novel, adequate design, evolution, and management means which is also one of the core challenges addressed by the recent German priority research program on Organic Computing.
"Look deep into nature and you will understand everything better." advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of "biologically-inspired computing" has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Universite Libre de Bruxelles, Belgium), of which an abstract is included in this volume."
This book constitutes the thoroughly refereed post-proceedings of the 5th IFIP WG 10.2 International Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, SEUS 2007, held on Santorini Island, Greece, in May 2007 in conjunction with ISORC 2007, the 10th IEEE International Symposium on Object/component/service-oriented Real-time Distributed Computing. The 31 revised full papers and 4 revised short papers presented were carefully reviewed and selected from 102 submissions. The papers are organized in topical sections on ubiquitous computing frameworks, safety-critical systems, validation of embedded and ubiquitous systems, ubiquitous computing applications, scheduling and non functional properties, self-organization and reconfiguration, service discovery and development platform, wireless networks, middleware architectures and virtualization, and environment interaction.
Dieses Buch versucht, eine durchgangige Systematik des Hardwareent wurfs uber verschiedene Abstraktionsebenen hinweg darzustellen. Da bei wird von einem abstrakten Modell des Entwurfsvorgangs als uber mehrere Abstraktionsebenen reichender ruckgekoppelter Prozess aus gegangen. Auf der Basis dieses Modells werden verschiedene Klas sen von Entwurfsaktivitaten identifiziert. Es sind dies: Modellierung, Modifikation/Optimierung, Implementation und Verifikation. Die ver schiedenen Abstraktionsebenen (Systemebene, algorithmische Ebene, Registertransfer-Ebene, Gatterebene, Schalterebene/ Ebene des sym bolischen Layouts, elektrische/Layout-Ebene) werden in verschiedenen Sichten (Verhalten, Struktur, Geometrie, Test) charakterisiert. Dient das erste Kapitel dazu, eine allgemeine Systematik des Hardwareent wurfs zu entwickeln, so werden in den weiteren Kapiteln verschiedene Entwurfsaktivitaten beispielhaft diskutiert. Das Kapitel 2 ist den verschiedene Methoden der Hardwaremodellie rung gewidmet. Nach einem allgemeinen Uberblick wird darin exempla risch die Breitband-Hardwarebeschreibungssprache DACAPO detail lierter eingefuhrt. Dies erlaubt, uber verschiedene Aspekte des Hard wareentwurfs in einheitlicher Terminologie zu sprechen, und zwar nicht nur uber Hardwarebeschreibungen auf unterschiedlichen Abstraktions ebenen, sondern auch uber verschiedene Algorithmen des Entwurfs prozesses. Im Kapitel 3 (Implementierungsaktivitaten) wird mit besonderem Au genmerk der Ubergang von der algorithmischen auf die Registertrans ferebene behandelt. Aber auch verschiedene Methoden des Steuerwerks entwurfs und der Ubergang auf die Gatterebene finden Berucksichti gung. Ein ausfuhrliches Entwurfsbeispiel soll zur Illustration dienen. Optimierungsverfahren (Kapitel 4) werden hauptsachlich auf der Regi stertransferebene, aber auch auf der algorithmischen und Gatterebene diskutiert. Auch hier wird ein Beispiel exemplarisch durchgefuhrt. Das Kapitel 5 ist der Verifikation/Evaluation/Validierung gewidmet."
|
You may like...
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
(1)
1 Recce: Volume 3 - Through Stealth Our…
Alexander Strachan
Paperback
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
(1)
|