Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This monograph details basic concepts and tools fundamental for the analysis and synthesis of linear systems subject to actuator saturation and developments in recent research. The authors use a state-space approach and focus on stability analysis and the synthesis of stabilizing control laws in both local and global contexts. Different methods of modeling the saturation and behavior of the nonlinear closed-loop system are given special attention. Various kinds of Lyapunov functions are considered to present different stability conditions. Results arising from uncertain systems and treating performance in the presence of saturation are given. The text proposes methods and algorithms, based on the use of linear programming and linear matrix inequalities, for computing estimates of the basin of attraction and for designing control systems accounting for the control bounds and the possibility of saturation. They can be easily implemented with mathematical software packages.
This monograph details basic concepts and tools fundamental for the analysis and synthesis of linear systems subject to actuator saturation and developments in recent research. The authors use a state-space approach and focus on stability analysis and the synthesis of stabilizing control laws in both local and global contexts. Different methods of modeling the saturation and behavior of the nonlinear closed-loop system are given special attention. Various kinds of Lyapunov functions are considered to present different stability conditions. Results arising from uncertain systems and treating performance in the presence of saturation are given. The text proposes methods and algorithms, based on the use of linear programming and linear matrix inequalities, for computing estimates of the basin of attraction and for designing control systems accounting for the control bounds and the possibility of saturation. They can be easily implemented with mathematical software packages.
Physical, safety or technological constraints induce that the control actuators can neither provide unlimited amplitude signals nor unlimited speed of reaction. The control problems of combat aircraft prototypes and satellite launchers offer interesting examples of the difficulties due to these major constraints. Neglecting actuator saturations on both amplitude and dynamics can be source of undesirable or even catastrophic behavior for the closed-loop system (such as loosing closed-loop stability). Such actuator saturations have also been blamed as one of several unfortunate mishaps leading to the 1986 Chernobyl nuclear power plant disaster. For these reasons, the study of the control problem (its structure, performance and stability analysis) for systems subject to both amplitude and rate actuator or sensor saturations as typical constraints has received the attention of many researchers in the last years. The different techniques described throughout the book are particularly attractive for industrial applications not only in aeronautical or space domains but also in the context of biological systems domain. Such methods are well suited for the development of tools that help engineers to solve analysis and synthesis problems in the context of control systems with input and output constraints
In practical control problems, many constraints have to be handled in order to design controllers which operate in a real environment. By combining results on robust control and saturating control, this book attempts to provide positive help for practical situations and, as one of the first books to merge the two control fields, it should generate considerable interest in scientific/acad emic circles. The ten chapters, which deal with stabilization and control of both linear and nonlinear systems, are each independent in their approach - some deal purely with theoretical results whilst others concentrate on ways in which the theory can be applied. The book's unity is secured by the desire to formulate control design requirements through constraints on input and model uncertainty description.
Creating some links between control feedback and biology modeling communities based on similarities in modeling, observing and perceiving alive structures, and analyzing interconnections between biological structures and subsystems was the main objective of this volume. In this context, biology systems need appropriate analysis tools due to their structure and hierarchy, complexity and environment interference, and we believe that these aspects may generate interesting research topics in control area. Indeed, several works, raising the potential impact of control developments to bring some beginning of answers in the context of biological systems, have been published in the recent years. The idea of this book was conceived in the context mentioned above with the objective to help in claiming many of the problems for control researchers, starting discussions and opening interactive debates between the control and biology communities, and, finally, to alert graduate students to the many interesting ideas at the frontier between control feedback theory and biology.
|
You may like...
The Politics Of Housing In (Post…
Kirsten Ruther, Martina Barker-Ciganikova, …
Hardcover
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
|