Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book provides the mathematical foundations of the theory of hyperhamiltonian dynamics, together with a discussion of physical applications. In addition, some open problems are discussed. Hyperhamiltonian mechanics represents a generalization of Hamiltonian mechanics, in which the role of the symplectic structure is taken by a hyperkahler one (thus there are three Kahler/symplectic forms satisfying quaternionic relations). This has proved to be of use in the description of physical systems with spin, including those which do not admit a Hamiltonian formulation. The book is the first monograph on the subject, which has previously been treated only in research papers.
This text serves as an introduction to the use of nonlinear symmetries in studying, simplifying and solving nonlinear equations. Part One provides a self-contained introduction to the theory. This emphasizes an intuitive understanding of jet spaces and the geometry of differential equations, and a special treatment of evolution problems and dynamical systems, including original results. In Part Two the theory is applied to equivariant dynamics, to bifurcation theory and to gauge symmetries, reporting recent results by the author. In particular, the fundamental results of equivariant bifurcation theory are extended to the case of nonlinear symmetries. The final part of the book gives an overview of new developments, including a number of applications, mainly in the physical sciences. A list of references dealing with nonlinear symmetries completes the volume. This volume should be of interest to researchers in mathematics and mathematical physics.
Si tratta di un libro di testo per i corsi di Matematica delle lauree specialistiche della classe di Biologia e Scienze Naturali. Sara di interesse anche per studenti dello stesso livello in Scienze Ambientali ed anche di Medicina. Potrebbe essere usato (in particolare i suoi capitoli piu' avanzati, segnatamente quelli che trattano la teoria dell'evoluzione) anche come testo complementare per corsi di Biomatematica."
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Catalogo Sistematico Delle Conifere Esistenti Nel Giardino E Nel Parco Di Brolio, Caratterizzate E Identificate Al Sett: 1898 Giuseppe Gaeta
This book provides the mathematical foundations of the theory of hyperhamiltonian dynamics, together with a discussion of physical applications. In addition, some open problems are discussed. Hyperhamiltonian mechanics represents a generalization of Hamiltonian mechanics, in which the role of the symplectic structure is taken by a hyperkahler one (thus there are three Kahler/symplectic forms satisfying quaternionic relations). This has proved to be of use in the description of physical systems with spin, including those which do not admit a Hamiltonian formulation. The book is the first monograph on the subject, which has previously been treated only in research papers.
|
You may like...
Wanted Dead & Alive - The Case For South…
Gregory Mthembu-Salter
Paperback
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
Business Writing For South Africans
Bittie Viljoen-Smook, Johan Geldenhuys, …
Paperback
(2)
|