Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.
Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.
The research on gaseous electronics reaches back more than 100 years. With the growing importance of gas lasers in so many research and industrial applications as well as power systems generating, transmitting, and distributing huge blocks of electrical power, the body of literature on cross sections, drift and diffusion, and ionization phenomena continues to bloom. Searching through this vast expanse of data is a daunting and time-consuming task. With this in mind, eminent researcher Gorur Govinda Raju presents an authoritative survey of the ballooning literature on gaseous electrical discharge. Gaseous Electronics: Theory and Practice begins with an overview of the physics underlying the collisions involved in discharge, scattering, ion mobilities, and the various cross-sections and relations between them. A discussion follows on experimental techniques used to measure collision cross-sections, covering the techniques related to the data presented in later chapters. In an unprecedented collection of data and analysis, the author supplies comprehensive cross-sections for rare gases such as Argon, Helium, Krypton, and Xenon; various diatomics; and complex molecules and industrial gases including hydrocarbons. He further includes discussions and analyses on drift and diffusion of electrons, ionization coefficients, attachment coefficients, high-voltage phenomena, and high-frequency discharges. Based on more than 40 years of experience in the field, Gaseous Electronics: Theory and Practice places a comprehensive collection of data together with theory and modern practice in a single, concise reference.
With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most-if not all-of the properly classified experimental results that scientists, researchers, and students require for a theoretical and practical understanding of collision properties and their impact. An unprecedented collection and analysis of electron neutral collision properties This book follows a new user-friendly format that enables readers to easily retrieve, analyze, and apply specific atomic/molecular information as needed. In his previous work, Gaseous Electronics: Theory and Practice, the author first explored electron-neutron interactions. To clarify the complex fundamental processes involved, he cited as much experimental data on atoms and molecules as limited space would allow. Completing that task, this handy reference more fully compiles essential revised data on more than 420 atoms and molecules, arranging it into easily digestible chapters, sections, and appendices. Analysis parameters include total scattering, ionization, excitation, attachment cross sections, ionization and attachment coefficients, attachment rates, and ion drift velocity. Some recent research areas in gaseous electronics include: Environmentally efficient and protective lighting devices Plasma research for power generation and space applications Medical applications (some involving skin treatment and healing) Written entirely in SI units, the book includes hundreds of tables, figures, and specially drawn charts, with data expressed in both tabular and graphical form. Each chapter stands independently and contains references for further research.
Dielectrics in Electric Fields explores the influence of electric fields on dielectric-i.e., non-conducting or insulating-materials, examining the distinctive behaviors of these materials through well-established principles of physics and engineering. Featuring five new chapters, nearly 200 new figures, and more than 800 new citations, this fully updated and significantly expanded Second Edition: Analyzes inorganic substances with real-life applications in harsh working conditions such as outdoor, nuclear, and space environments Introduces methods for measuring dielectric properties at microwave frequencies, presenting results obtained for specific materials Discusses the application of dielectric theory in allied fields such as corrosion studies, civil engineering, and health sciences Combines in one chapter coverage of electrical breakdown in gases with breakdown in micrometric gaps Offers extensive coverage of electron energy distribution-essential knowledge required for the application of plasma sciences in medical science Delivers a detailed review of breakdown in liquids, along with an overview of electron mobility, providing a clear understanding of breakdown phenomena Explains breakdown in solid dielectrics such as single crystals, polycrystalline and amorphous states, thin films, and powders compressed to form pellets Addresses the latest advances in dielectric theory and research, including cutting-edge nanodielectric materials and their practical applications Blends early classical papers that laid the foundation for much of the dielectric theory with more recent work The author has drawn from more than 55 years of research studies and experience in the areas of high-voltage engineering, power systems, and dielectric materials and systems to supply both aspiring and practicing engineers with a comprehensive, authoritative source for up-to-date information on dielectrics in electric fields.
With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author s vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most if not all of the properly classified experimental results that scientists, researchers, and students require for a theoretical and practical understanding of collision properties and their impact. An unprecedented collection and analysis of electron neutral collision properties This book follows a new user-friendly format that enables readers to easily retrieve, analyze, and apply specific atomic/molecular information as needed. In his previous work, Gaseous Electronics: Theory and Practice, the author first explored electron neutron interactions. To clarify the complex fundamental processes involved, he cited as much experimental data on atoms and molecules as limited space would allow. Completing that task, this handy reference more fully compiles essential revised data on more than 420 atoms and molecules, arranging it into easily digestible chapters, sections, and appendices. Analysis parameters include total scattering, ionization, excitation, attachment cross sections, ionization and attachment coefficients, attachment rates, and ion drift velocity. Some recent research areas in gaseous electronics include:
Written entirely in SI units, the book includes hundreds of tables, figures, and specially drawn charts, with data expressed in both tabular and graphical form. Each chapter stands independently and contains references for further research. "
The research on gaseous electronics reaches back more than 100 years. With the growing importance of gas lasers in so many research and industrial applications as well as power systems generating, transmitting, and distributing huge blocks of electrical power, the body of literature on cross sections, drift and diffusion, and ionization phenomena continues to bloom. Searching through this vast expanse of data is a daunting and time-consuming task. With this in mind, eminent researcher Gorur Govinda Raju presents an authoritative survey of the ballooning literature on gaseous electrical discharge. Gaseous Electronics: Theory and Practice begins with an overview of the physics underlying the collisions involved in discharge, scattering, ion mobilities, and the various cross-sections and relations between them. A discussion follows on experimental techniques used to measure collision cross-sections, covering the techniques related to the data presented in later chapters. In an unprecedented collection of data and analysis, the author supplies comprehensive cross-sections for rare gases such as Argon, Helium, Krypton, and Xenon; various diatomics; and complex molecules and industrial gases including hydrocarbons. He further includes discussions and analyses on drift and diffusion of electrons, ionization coefficients, attachment coefficients, high-voltage phenomena, and high-frequency discharges. Based on more than 40 years of experience in the field, Gaseous Electronics: Theory and Practice places a comprehensive collection of data together with theory and modern practice in a single, concise reference.
|
You may like...
CSI - Crime Scene Investigation: The…
William L. Petersen, Marg Helgenberger, …
Blu-ray disc
(1)
R60 Discovery Miles 600
|