Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.
The widespread use of web-based communities, social media, and social networking sites has brought a rapid change to the interaction between computers and users as well as the digital experience as a whole. Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organisation science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.
Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users' past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users' trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies. The book consists of two main parts - a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users' data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors. The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners to integrate these techniques into new applications.
This book constitutes the thoroughly refereed proceedings of the International Workshops on Behavior and Social Informatics and Computing, BSIC 2013, held as collocated event of IJCAI 2013, in Beijing, China in August 2013 and the International Workshop on Behavior and Social Informatics, BSI 2013, held as satellite workshop of PAKDD 2013, in Gold Coast, Australia, in April 2013. The 23 papers presented were carefully reviewed and selected from 58 submissions. The papers study a wide range of techniques and methods for behavior/social-oriented analyses including behavioral and social interaction and network, behavioral/social patterns, behavioral/social impacts, the formation of behavioral/social-oriented groups and collective intelligence and behavioral/social intelligence emergence.
The two-volume set LNAI 7818 + LNAI 7819 constitutes the refereed proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2013, held in Gold Coast, Australia, in April 2013. The total of 98 papers presented in these proceedings was carefully reviewed and selected from 363 submissions. They cover the general fields of data mining and KDD extensively, including pattern mining, classification, graph mining, applications, machine learning, feature selection and dimensionality reduction, multiple information sources mining, social networks, clustering, text mining, text classification, imbalanced data, privacy-preserving data mining, recommendation, multimedia data mining, stream data mining, data preprocessing and representation.
The two-volume set LNAI 7818 + LNAI 7819 constitutes the refereed proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2013, held in Gold Coast, Australia, in April 2013. The total of 98 papers presented in these proceedings was carefully reviewed and selected from 363 submissions. They cover the general fields of data mining and KDD extensively, including pattern mining, classification, graph mining, applications, machine learning, feature selection and dimensionality reduction, multiple information sources mining, social networks, clustering, text mining, text classification, imbalanced data, privacy-preserving data mining, recommendation, multimedia data mining, stream data mining, data preprocessing and representation.
This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.
In past decades, data mining has witnessed substantial advances by efforts from various communities. On the other hand, new research questions and practical challenges are continuously presented due to newly emerging topics and applications within the various fields closely related to human daily life, e.g. social media and social networking. This book aims to bridge the gap between the existing research and application progresses in traditional data mining and the latest advances in newly emerging information services.
This book constitutes the refereed proceedings of the 14th Asia-Pacific Conference APWeb 2012 held in Kunming, China, in April 2012. The 39 full papers presented together with 34 short papers, 2 keynote talks, and 5 demo papers were carefully reviewed and selected from 167 initial submissions. The papers cover contemporary topics in the fields of Web management and World Wide Web related research and applications, such as advanced application of databases, cloud computing, content management, data mining and knowledge discovery, distributed and parallel processing, grid computing, internet of things, semantic Web and Web ontology, security, privacy and trust, sensor networks, service-oriented computing, Web community analysis, Web mining and social networks.
This book constitutes the thoroughly refereed joint post-workshop proceedings of three international workshops held in conjunction with the 10th Asia-Pacific Web Conference, APWeb 2008, in Shenyang, China, in April 2008 (see LNCS 4976). The 15 revised full papers presented together with 4 invited papers and 4 keynote lectures were carefully reviewed and selected from numerous submissions. Topics addressed by the workshops are business intelligence and data mining (BIDM 2008), health data management (IWHDM 2008), and data engineering and Web technology research (DeWeb 2008). The papers focus on issues such as Web searching, Web services, database, data mining, bioinformatics, and business intelligence.
engineering technologies and research activities, not only in the Asia-Paci?c region but also in the international research arena. April 2008 Hiroyuki Kitagawa Kam Fai Wong Preface The rapid development of Web applications and the ?ux of Web information require new technologies for the design, implementation and management of information infrastructure on the Web. This volume contains papers selected for presentation at the 10th Asia Paci?c Conference on Web Technology (APWeb 2008), which was held in Shenyang, China during April 26-28, 2008. APWeb is an international conference series on WWW technologies and is the primary forum for researchers, practitioners, developers and users from both academia and industry to exchange cutting-edge ideas, results, experience, techniques and tools on WWW-related technologies and new advanced applications. APWeb 2008 received 169 submissions from 19 countries and regions wor- wide, including USA, Australia, Japan, Korea, China, Hong Kong, Taiwan, UK, Germany, India, France, Turkey, Pakistan, Switzerland, New Zealand, Iran, Macao, Malaysia, and Tunisia. After a thorough review process in which each paper was reviewed and recommended by at least three Program Committe (PC) members or external reviewers, the APWeb 2008 PC selected 48 regular research papers (acceptance ratio 28%) and 15 short papers (acceptance ratio 9%). This volume also includes four invited/keynote papers. The keynote l- tures were given by Masaru Kitsuregawa (University of Tokyo), Wei-Ying Ma (Microsoft Research Asia), Xuemin Lin (University of New South Wales) and Yong Shi (China Academy of Sciences
Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users' past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users' trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies. The book consists of two main parts - a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users' data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors. The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners to integrate these techniques into new applications.
This three-volume set, LNAI 13629, LNAI 13630, and LNAI 13631 constitutes the thoroughly refereed proceedings of the 19th Pacific Rim Conference on Artificial Intelligence, PRICAI 2022, held in Shangai, China, in November 10-13, 2022. The 91 full papers and 39 short papers presented in these volumes were carefully reviewed and selected from 432 submissions. PRICAI covers a wide range of topics in the areas of social and economic importance for countries in the Pacific Rim: artificial intelligence, machine learning, natural language processing, knowledge representation and reasoning, planning and scheduling, computer vision, distributed artificial intelligence, search methodologies, etc.
This three-volume set, LNAI 13629, LNAI 13630, and LNAI 13631 constitutes the thoroughly refereed proceedings of the 19th Pacific Rim Conference on Artificial Intelligence, PRICAI 2022, held in Shangai, China, in November 10-13, 2022. The 91 full papers and 39 short papers presented in these volumes were carefully reviewed and selected from 432 submissions. PRICAI covers a wide range of topics in the areas of social and economic importance for countries in the Pacific Rim: artificial intelligence, machine learning, natural language processing, knowledge representation and reasoning, planning and scheduling, computer vision, distributed artificial intelligence, search methodologies, etc.
This three-volume set, LNAI 13629, LNAI 13630, and LNAI 13631 constitutes the thoroughly refereed proceedings of the 19th Pacific Rim Conference on Artificial Intelligence, PRICAI 2022, held in Shangai, China, in November 10-13, 2022. The 91 full papers and 39 short papers presented in these volumes were carefully reviewed and selected from 432 submissions. PRICAI covers a wide range of topics in the areas of social and economic importance for countries in the Pacific Rim: artificial intelligence, machine learning, natural language processing, knowledge representation and reasoning, planning and scheduling, computer vision, distributed artificial intelligence, search methodologies, etc.
|
You may like...
Robert - A Queer And Crooked Memoir For…
Robert Hamblin
Paperback
(1)
|