Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond "traditional" models, it describes more evolved variants that can reproduce:* intermodal networks with high- and low-frequency services;* realistic behavioural hypotheses underpinning route choice;* time dependency in frequency-based models; and* assumptions about the knowledge that users have of network conditionsthat are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practitioners and public transport operators who need to model and manage transit systems; for example, the role of ITS is explained with regard to their potential in data collection for modelling purposes and validation techniques, as well as with regard to the additional data on network patronage and passengers' preferences that influences the network-management and control strategies implemented. In addition, it explains how the different aspects of network operations can be incorporated in traditional models and identifies the advantages and disadvantages of doing so. Lastly, the book provides practical information on state-of-the-art implementations of the different models and the commercial packages that are currently available for transit modelling. Showcasing original work done under the aegis of the COST Action TU1004 (TransITS), the book provides a broad readership, ranging from Master and PhD students to researchers and from policy makers to practitioners, with a comprehensive tool for understanding transit assignment models.
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.
This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond "traditional" models, it describes more evolved variants that can reproduce:* intermodal networks with high- and low-frequency services;* realistic behavioural hypotheses underpinning route choice;* time dependency in frequency-based models; and* assumptions about the knowledge that users have of network conditionsthat are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practitioners and public transport operators who need to model and manage transit systems; for example, the role of ITS is explained with regard to their potential in data collection for modelling purposes and validation techniques, as well as with regard to the additional data on network patronage and passengers' preferences that influences the network-management and control strategies implemented. In addition, it explains how the different aspects of network operations can be incorporated in traditional models and identifies the advantages and disadvantages of doing so. Lastly, the book provides practical information on state-of-the-art implementations of the different models and the commercial packages that are currently available for transit modelling. Showcasing original work done under the aegis of the COST Action TU1004 (TransITS), the book provides a broad readership, ranging from Master and PhD students to researchers and from policy makers to practitioners, with a comprehensive tool for understanding transit assignment models.
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.
Il presente volume costituisce un trattato di meccanica lagrangiana e hamiltoniana, e completa la rassegna sui sistemi dinamici iniziata nel primo, di cui e la naturale continuazione. Il testo e rivolto a studenti di un corso di laurea triennale in matematica o in fisica, ed e al contempo di potenziale interesse per studenti di un corso di laurea magistrale o di dottorato, nonche per ricercatori intenzionati a lavorare nel campo. Oltre agli argomenti di base, sono infatti affrontati anche argomenti avanzati, per i quali sono comunque forniti gli strumenti matematici utilizzati in modo da rendere la trattazione autocontenuta e accessibile ai meno esperti. I temi discussi sono: formalismo lagrangiano, principi variazionali, metodo di Routh e teorema di Noether, teoria delle piccole oscillazioni, moto dei corpi rigidi pesanti, formalismo hamiltoniano, trasformazioni canoniche, metodo di Hamilton-Jacobi, teoria delle perturbazioni, sistemi quasi-integrabili, studio delle serie perturbative e teorema KAM. Il testo e corredato di un ampio numero di esempi illustrativi, di applicazioni e, alla fine di ogni capitolo, di un'ampia scelta di esercizi, per la maggior parte dei quali e fornita la soluzione.
|
You may like...
Robin Robin: A Push, Pull and Slide Book
Macmillan Children's Books
Board book
|