Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 "Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory", which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
Originating from a summer school taught by the authors, this concise treatment includes many of the main results in the area. An introductory chapter describes the fundamental results on linear algebraic groups, culminating in the classification of semisimple groups. The second chapter introduces more specialized topics in the subgroup structure of semisimple groups, and describes the classification of the maximal subgroups of the simple algebraic groups. The authors then systematically develop the subgroup structure of finite groups of Lie type as a consequence of the structural results on algebraic groups. This approach will help students to understand the relationship between these two classes of groups. The book covers many topics that are central to the subject, but missing from existing textbooks. The authors provide numerous instructive exercises and examples for those who are learning the subject as well as more advanced topics for research students working in related areas.
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne-Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish-Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
|
You may like...
|