![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Respondents to survey questions involving sensitive information, such as sexual behavior, illegal drug usage, tax evasion, and income, may refuse to answer the questions or provide untruthful answers to protect their privacy. This creates a challenge in drawing valid inferences from potentially inaccurate data. Addressing this difficulty, non-randomized response approaches enable sample survey practitioners and applied statisticians to protect the privacy of respondents and properly analyze the gathered data. Incomplete Categorical Data Design: Non-Randomized Response Techniques for Sensitive Questions in Surveys is the first book on non-randomized response designs and statistical analysis methods. The techniques covered integrate the strengths of existing approaches, including randomized response models, incomplete categorical data design, the EM algorithm, the bootstrap method, and the data augmentation algorithm. A self-contained, systematic introduction, the book shows you how to draw valid statistical inferences from survey data with sensitive characteristics. It guides you in applying the non-randomized response approach in surveys and new non-randomized response designs. All R codes for the examples are available at www.saasweb.hku.hk/staff/gltian/.
Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. After introducing the missing data problems, Bayesian approach, and posterior computation, the book succinctly describes EM-type algorithms, Monte Carlo simulation, numerical techniques, and optimization methods. It then gives exact posterior solutions for problems, such as nonresponses in surveys and cross-over trials with missing values. It also provides noniterative posterior sampling solutions for problems, such as contingency tables with supplemental margins, aggregated responses in surveys, zero-inflated Poisson, capture-recapture models, mixed effects models, right-censored regression model, and constrained parameter models. The text concludes with a discussion on compatibility, a fundamental issue in Bayesian inference. This book offers a unified treatment of an array of statistical problems that involve missing data and constrained parameters. It shows how Bayesian procedures can be useful in solving these problems.
Respondents to survey questions involving sensitive information, such as sexual behavior, illegal drug usage, tax evasion, and income, may refuse to answer the questions or provide untruthful answers to protect their privacy. This creates a challenge in drawing valid inferences from potentially inaccurate data. Addressing this difficulty, non-randomized response approaches enable sample survey practitioners and applied statisticians to protect the privacy of respondents and properly analyze the gathered data. Incomplete Categorical Data Design: Non-Randomized Response Techniques for Sensitive Questions in Surveys is the first book on non-randomized response designs and statistical analysis methods. The techniques covered integrate the strengths of existing approaches, including randomized response models, incomplete categorical data design, the EM algorithm, the bootstrap method, and the data augmentation algorithm. A self-contained, systematic introduction, the book shows you how to draw valid statistical inferences from survey data with sensitive characteristics. It guides you in applying the non-randomized response approach in surveys and new non-randomized response designs. All R codes for the examples are available at www.saasweb.hku.hk/staff/gltian/.
Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. After introducing the missing data problems, Bayesian approach, and posterior computation, the book succinctly describes EM-type algorithms, Monte Carlo simulation, numerical techniques, and optimization methods. It then gives exact posterior solutions for problems, such as nonresponses in surveys and cross-over trials with missing values. It also provides noniterative posterior sampling solutions for problems, such as contingency tables with supplemental margins, aggregated responses in surveys, zero-inflated Poisson, capture-recapture models, mixed effects models, right-censored regression model, and constrained parameter models. The text concludes with a discussion on compatibility, a fundamental issue in Bayesian inference. This book offers a unified treatment of an array of statistical problems that involve missing data and constrained parameters. It shows how Bayesian procedures can be useful in solving these problems.
|
You may like...
Harry Potter: A Pop-Up Guide To Hogwarts
Matthew Reinhart
Hardcover
Jan en die Boontjierank
North Parade Publishing, De Wet Hugo
Board book
|