Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.
The development of the orbits theory lags behind the development of satellite technology. This book provides, for the first time in the history of human satellite development, the complete third order solution of the orbits under all possible disturbances. It describes the theory of satellite orbits, derives the complete solutions of the orbital disturbances, describes the algorithms of orbits determination based on the theory, describes the applications of the theory to the phenomenon of the satellite formation physically. The subjects include: Orbits Motion Equations, Disturbance theory, Solutions of the differential Equations, Algorithms of Orbits determinations, Applications of the theory to the satellite formation.
This reference and handbook describes theory, algorithms and applications of the Global Positioning System (GPS/Glonass/Galileo/Compass). It is primarily based on source-code descriptions of the KSGsoft program developed at the GFZ in Potsdam. The theory and algorithms are extended and verified for a new development of a multi-functional GPS/Galileo software. Besides the concepts such as the unified GPS data processing method, the diagonalisation algorithm, the adaptive Kalman filter, the general ambiguity search criteria, and the algebraic solution of variation equation reported in the first edition, the equivalence theorem of the GPS algorithms, the independent parameterisation method, and the alternative solar radiation model reported in the second edition, the modernisation of the GNSS system, the new development of the theory and algorithms, and research in broad applications are supplemented in this new edition. Mathematically rigorous, the book begins with the introduction, the basics of coordinate and time systems and satellite orbits, as well as GPS observables, and deals with topics such as physical influences, observation equations and their parameterisation, adjustment and filtering, ambiguity resolution, software development and data processing and the determination of perturbed orbits.
This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences for high-level geodetic researchers, educators as well as engineers and students. Some of the chapters are written to ll literature blanks of the related areas. Most chapters are written by well-known scientists throughout the world in the related areas. The chapters are ordered by their titles. Summaries of the individual chapters and introductions of their authors and co-authors are as follows. Chapter 1 "Absolute and Relative Gravimetry" provides an overview of the gravimetric methods to determine most accurately the gravity acceleration at given locations.
This reference and handbook describes theory, algorithms and applications of the Global Positioning System (GPS/Glonass/Galileo/Compass). It is primarily based on source-code descriptions of the KSGsoft program developed at the GFZ in Potsdam. The theory and algorithms are extended and verified for a new development of a multi-functional GPS/Galileo software. Besides the concepts such as the unified GPS data processing method, the diagonalisation algorithm, the adaptive Kalman filter, the general ambiguity search criteria, and the algebraic solution of variation equation reported in the first edition, the equivalence theorem of the GPS algorithms, the independent parameterisation method, and the alternative solar radiation model reported in the second edition, the modernisation of the GNSS system, the new development of the theory and algorithms, and research in broad applications are supplemented in this new edition. Mathematically rigorous, the book begins with the introduction, the basics of coordinate and time systems and satellite orbits, as well as GPS observables, and deals with topics such as physical influences, observation equations and their parameterisation, adjustment and filtering, ambiguity resolution, software development and data processing and the determination of perturbed orbits.
The development of the orbits theory lags behind the development of satellite technology. This book provides, for the first time in the history of human satellite development, the complete third order solution of the orbits under all possible disturbances. It describes the theory of satellite orbits, derives the complete solutions of the orbital disturbances, describes the algorithms of orbits determination based on the theory, describes the applications of the theory to the phenomenon of the satellite formation physically. The subjects include: Orbits Motion Equations, Disturbance theory, Solutions of the differential Equations, Algorithms of Orbits determinations, Applications of the theory to the satellite formation.
This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences for high-level geodetic researchers, educators as well as engineers and students. Some of the chapters are written to ll literature blanks of the related areas. Most chapters are written by well-known scientists throughout the world in the related areas. The chapters are ordered by their titles. Summaries of the individual chapters and introductions of their authors and co-authors are as follows. Chapter 1 "Absolute and Relative Gravimetry" provides an overview of the gravimetric methods to determine most accurately the gravity acceleration at given locations.
This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.
The purpose of this reference and handbook is to describe and to derive the analytic solutionsoftheequationsofsatellitemotionperturbedbyextraterrestrialandgeo- tential disturbances of the second order. The equations of satellite motion perturbed by extraterrestrial disturbances are solved by means of discretization and appr- imated potential function as well as Gaussian equations. The equations perturbed by geopotential disturbances are solved by symbolic mathematical operations. The traditional problem of singularity in the solutions is solved by so-called singulari- free orbit theory. Simpli?ed disturbed equations of motion are proposed to simplify the solutions. Applications of the theory for analytic orbit determination are also discussed. Indeed, this is the ?rst book since the satellite era, which describes s- tematically the orbit theory with analytical solutions, with respect to all of extrat- restrial and geopotential disturbances of the second order, and the solutions are free of singularity. Based on such a theory, the algorithms of orbit determination can be renewed; deeper insight into the physics of disturbances becomes possible; the way to a variety of new applications and re?nements is opened. My primary knowledge of the orbit theory came from my education of mat- matics while studying physics and theoretical mechanics (1981). My ?rst practical experience with orbit came from the research activity at the Technical University (TU) Berlin on orbit corrections of the satellite altimetry data (1988-1992). The extensive experience on orbit came from the GPS/Galileo software development for orbit determination and geopotential mapping at the GFZ (2001-2004).
This, the second edition of the hugely practical reference and handbook describes kinematic, static and dynamic Global Positioning System theory and applications. It is primarily based upon source-code descriptions of the KSGSoft program developed by the author and his colleagues and used in the AGMASCO project of the EU. This is the first book to report the unified GPS data processing method and algorithm that uses equations for selectively eliminated equivalent observations.
|
You may like...
|