Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Advance in barley sciences presents the latest developments in barley sciences. It collects 39 papers submitted to the 11th International Barley Genetics Symposium, and covers all presentation sessions of the conference, i.e., barley development and economy, utilization of germplasm, genetic resources and genetic stocks, end-uses, biotic stress tolerance, abiotic stresses, new and renewed breeding methodology, barley physiology, breeding success stories, barley genomics and all other '-omics.' Th e information will be useful for barley breeders, brewers, biochemists, molecular geneticists and biotechnologists. Th is book may also serve as reference text for students and scientists engaged in barley research. Dr. Guoping Zhang is a barley breeder and crop physiologist at the Department of Agronomy, Zhejiang University, China. Dr. Chengdao Li is a senior molecular geneticist and barley breeder at the Department of Agriculture and Food, Western Australia, Australia. He is also an adjunct professor at Murdoch University of Australia and Zhejiang University. Dr. Xu Liu, a member of the China Academy of Engineering, is a plant resources researcher at the Chinese Academy of Agricultural Sciences.
This book takes a "bottom-up" approach, beginning with atoms and molecules - molecular building blocks - and assembling them to build nanostructured materials. Coverage includes Carbon Nanotubes, Nanowires, and Diamondoids. The applications presented here will enable practitioners to design and build nanometer-scale systems. These concepts have far-reaching implications: from mechanical to chemical processes, from electronic components to ultra-fine sensors, from medicine to energy, and from pharmaceuticals to agriculture and food.
Computational Studies of New Materials was published by World Scientific in 1999 and edited by Daniel Jelski and Thomas F George. Much has happened during the past decade. Advances have been made on the same materials discussed in the 1999 book, including fullerenes, polymers and nonlinear optical processes in materials, which are presented in this 2010 book. In addition, different materials and topics are comprehensively covered, including nanomedicine, hydrogen storage materials, ultrafast laser processes, magnetization and light-emitting diodes.
This book, the first of this kind, provides a comprehensive introduction to ultrafast phenomena, covering the fundamentals of ultrafast spin and charge dynamics, femtosecond magnetism, all-optical spin switching, and high-harmonic generation. It covers the experimental tools, including ultrafast pump-probe experiments, and theoretical methods including quantum chemistry and density functional theory, both time-independent and time-dependent. The authors explain in clear language how an ultrafast laser pulse is generated experimentally, how it can induce rapid responses in electrons and spins in molecules, nanostructures and solids (magnetic materials and superconductors), and how it can create high-harmonic generation from atoms and solids on the attosecond timescale. They also show how this field is driving the next generation of magnetic storage devices through femtomagnetism, all-optical spin switching in ferrimagnets and beyond, magnetic logic in magnetic molecules, and ultrafast intense light sources, incorporating numerous computer programs, examples, and problems throughout, to show how the beautiful research can be done behind the scene. Key features: * Provides a clear introduction to modern ultrafast phenomena and their applications in physics, chemistry, materials sciences, and engineering. * Presents in detail how high-harmonic generation occurs in atoms and solids. * Explains ultrafast demagnetization and spin switching, a new frontier for development of faster magnetic storage devices. * Includes numerous worked-out examples and problems in each chapter, with real research codes in density functional theory and quantum chemical calculations provided in the chapters and in the Appendices. This book is intended for undergraduate and graduate students, researchers in physics, chemistry, biology, materials sciences, and engineering.
Advance in barley sciences presents the latest developments in barley sciences. It collects 39 papers submitted to the 11th International Barley Genetics Symposium, and covers all presentation sessions of the conference, i.e., barley development and economy, utilization of germplasm, genetic resources and genetic stocks, end-uses, biotic stress tolerance, abiotic stresses, new and renewed breeding methodology, barley physiology, breeding success stories, barley genomics and all other '-omics.' Th e information will be useful for barley breeders, brewers, biochemists, molecular geneticists and biotechnologists. Th is book may also serve as reference text for students and scientists engaged in barley research. Dr. Guoping Zhang is a barley breeder and crop physiologist at the Department of Agronomy, Zhejiang University, China. Dr. Chengdao Li is a senior molecular geneticist and barley breeder at the Department of Agriculture and Food, Western Australia, Australia. He is also an adjunct professor at Murdoch University of Australia and Zhejiang University. Dr. Xu Liu, a member of the China Academy of Engineering, is a plant resources researcher at the Chinese Academy of Agricultural Sciences.
This book takes a "bottom-up" approach, beginning with atoms and molecules - molecular building blocks - and assembling them to build nanostructured materials. Coverage includes Carbon Nanotubes, Nanowires, and Diamondoids. The applications presented here will enable practitioners to design and build nanometer-scale systems. These concepts have far-reaching implications: from mechanical to chemical processes, from electronic components to ultra-fine sensors, from medicine to energy, and from pharmaceuticals to agriculture and food.
Exploration, Identification and Utilization of Barley Germplasm explores the timely global challenges related to barley production posed by the narrowing of biodiversity and problem soils, identifying elite genotypes which will enhance barley breeding and be essential to genetic and evolution studies. The book covers the utilization of barley germplasm for improving the quality of both food and feed barley as well as exploring and utilizing varieties of germplasm that are tolerant to drought, waterlogged, salt, and acid soil. Chapters are devoted to prime strategies for future research, including identifying barley germplasm by applying Omics, exploring barley germplasm by means of the Focused Identification of Germplasm Strategy (FIGS), and creating barley germplasm through mutation. Users will find this book to be a key research reference for both professionals and academics, providing a comprehensive update for established barley researchers that equips them with an understanding of the new methodologies needed for innovation and discovery, while also providing a helpful entry to the subject for young researchers and students.
Sustainable Use of Nanoparticles in Agriculture explores the specific challenges of understanding and applying the catalytic efficacy of nanotechnology for agricultural crop improvement. Focusing specifically on the nanomaterial-based metal organic frameworks as single atom catalysis to improve their applicability through innovations in the makeup, style and structure of those catalysts. Nano-nutrition is the implementation of nanotechnology to provide nano-sized nutrients to grow crops addressing both biotic and abiotic nutrients. As abiotic nutrients or NPs are obtained from inorganic substances such as salts, they post challenges as many of these are un-biodegradable whereas biotic nutrients are made from organic sources that are biodegradable and eco-friendly. This book presents research into nano-nutrition that has been undertaken to create a methodology for improving plant nutrition that is sustainable and effective. Sustainable Use of Nanoparticles in Agricultures focuses on utilizing nano-nutrition to improve plant productivity in both micro-and macronutrients on a wide scale without environmental risks. This book is an important reference for researchers and academics seeking insights into the potential means to improve crop plant health.
|
You may like...
Pentecostal Modernism: Lovecraft, Los…
Stephen Shapiro, Philip Barnard
Hardcover
R3,208
Discovery Miles 32 080
The Immigrant Experience in North…
Katherine Payant, Toby Rose
Hardcover
R2,690
Discovery Miles 26 900
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
|