Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This book constitutes the refereed proceedings of the 4th International Workshop on Patch-Based Techniques in Medical Images, Patch-MI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 15 full papers presented were carefully reviewed and selected from 17 submissions. The papers are organized in the following topical sections: Image Denoising Image Registration and Matching, Image Classification and Detection, Brain Image Analysis, and Retinal Image Analysis.
This book constitutes the refereed proceedings of the Second International Workshop on Connectomics in NeuroImaging, CNI 2018, held in conjunction with MICCAI 2018 in Granada, Spain, in September 2018. The 15 full papers presented were carefully reviewed and selected from 20 submissions. The papers deal with new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications.
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Medical Imaging, MLMI 2013, held in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013, in Nagoya, Japan, in September 2013. The 32 contributions included in this volume were carefully reviewed and selected from 57 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging.
Connectomics: Applications to Neuroimaging is unique in presenting the frontier of neuro-applications using brain connectomics techniques. The book describes state-of-the-art research that applies brain connectivity analysis techniques to a broad range of neurological and psychiatric disorders (Alzheimer's, epilepsy, stroke, autism, Parkinson's, drug or alcohol addiction, depression, bipolar, and schizophrenia), brain fingerprint applications, speech-language assessments, and cognitive assessment. With this book the reader will learn: Basic mathematical principles underlying connectomics How connectomics is applied to a wide range of neuro-applications What is the future direction of connectomics techniques. This book is an ideal reference for researchers and graduate students in computer science, data science, computational neuroscience, computational physics, or mathematics who need to understand how computational models derived from brain connectivity data are being used in clinical applications, as well as neuroscientists and medical researchers wanting an overview of the technical methods. Features: Combines connectomics methods with relevant and interesting neuro-applications Covers most of the hot topics in neuroscience and clinical areas Appeals to researchers in a wide range of disciplines: computer science, engineering, data science, mathematics, computational physics, computational neuroscience, as well as neuroscience, and medical researchers interested in the technical methods of connectomics
This book constitutes the refereed proceedings of the First International Workshop on Connectomics in NeuroImaging, CNI 2017, held in conjunction with MICCAI 2017 in Quebec City, Canada, in September 2017. The 19 full papers presented were carefully reviewed and selected from 26 submissions. The papers deal with new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications.
This book constitutes the refereed proceedings of the Third International Workshop on Patch-Based Techniques in Medical Images, Patch-MI 2017, which was held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 18 regular papers presented in this volume were carefully reviewed and selected from 26 submissions. The papers are organized in topical sections on multi-atlas segmentation; segmentation; Alzheimer's disease; reconstruction, denoising, super-resolution; tumor, lesion; and classification, retrival.
This book constitutes the refereed proceedings of the Second International Workshop on Patch-Based Techniques in Medical Images, Patch-MI 2016, which was held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016. The 17 regular papers presented in this volume were carefully reviewed and selected from 25 submissions. The main aim of the Patch-MI 2016 workshop is to promote methodological advances within the medical imaging field, with various applications in image segmentation, image denoising, image super-resolution, computer-aided diagnosis, image registration, abnormality detection, and image synthesis.
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians.
This book constitutes the thoroughly refereed post-workshop proceedings of the First International Workshop on Patch-based Techniques in Medical Images, Patch-MI 2015, which was held in conjunction with MICCAI 2015, in Munich, Germany, in October 2015. The 25 full papers presented in this volume were carefully reviewed and selected from 35 submissions. The topics covered are such as image segmentation of anatomical structures or lesions; image enhancement; computer-aided prognostic and diagnostic; multi-modality fusion; mono and multi modal image synthesis; image retrieval; dynamic, functional physiologic and anatomic imaging; super-pixel/voxel in medical image analysis; sparse dictionary learning and sparse coding; analysis of 2D, 2D+t, 3D, 3D+t, 4D, and 4D+t data.
This book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning in Medical Imaging, MLMI 2014, held in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2014, in Cambridge, MA, USA, in September 2014. The 40 contributions included in this volume were carefully reviewed and selected from 70 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging.
|
You may like...
|