Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book integrates the theories of complex self-organizing systems with the rich body of discourse and literature developed in what might be called social theory of cities and urbanism . It uses techniques from dynamical complexity and synergetics to successfully tackle open social science questions.
The study of cooperative phenomena is one of the dominant features of contem porary physics. Outside physics it has grown to a huge field of interdisciplinary investigation, involving all the natural sciences from physics via biology to socio logy. Yet, during the first few decades following the advent of quantum theory, the pursuit of the single particle or the single atom, as the case may be, has been so fascinating that only a small number of physicists have stressed the importance of collective behaviour. One outstanding personality among these few is Professor HERBERT FROHLICH. He has made an enormous contribution to the modern concept of cooperativity and has stimulated a whole generation of physicists. Therefore, it seemed to the editors very appropriate to dedicate a volume on "cooperative phenomena" to him on the occasion of his official retirement from his university duties. Nevertheless, in the course of carrying out this project, the editors have been somewhat amazed to find that they have covered the essentials of contemporary physics and its im pact on other scientific disciplines. It thus becomes clear how much HERBERT FROHLICH has inspired research workers and has acted as a stimulating discussion partner for others. FROHLICH is one of those exceptional scientists who have wor ked in quite different fields and given them an enormous impetus. Unfortunately, the number of scientists of such distinctive personality has been decreasing in our century."
Today, telecommunication systems are expanding and evolving at a remarkable rate, with the aid of fiber optics, satellites and comput erized switchboard systems. Airline systems are providing faster and more efficient networks for world-wide human transportation. Com puters are now generally accessible to virtually all industries and many households. But perhaps the most important factor is that education systems are expanding the knowledge base for city populations, thus resulting in increased efficiency in the use of computers, telecommuni cations and rapid transportation systems. The revolutionary age of logistical networks is upon lIS. Logistical networks are those systems which facilitate the movement of knowl edge, commodities, money, and people in association with thE; produc tion or consumption of goods and services. Logistical networks form a set of important infrastructure which serve as hard and soft means to sustain all kinds of movement, transactions and diffusion within and between global networks of cities. Major structural changes in the re gional and urban economy, culture and institutions are triggered by slow but steady changes in global logistical systems."
According to its definition, synergetics is concerned with the cooperation of indi vidual parts of a system that produces macroscopic temporal, spatial or functional structures. A good deal of the volumes published within this series dealt with the formation of truly macroscopic structures which we can s. ee with our eyes. A common scheme could be developed to understand the formation of many patterns through self-organization. In particular, we have to use concepts which go beyond conventio nal thermodynamics. New ideas became crucial. We have to study kinetic processes, and often few highly excited degrees of freedom play the decisive role in the evo lution of structures. Over the past years it has turned out that quite similar lines of approach apply to a world which at first sight would be classified as "microsco pic." That world consists of processes in which biomolecules are involved. An impor tant example for the problems occurring there is provided by Manfred Eigen's theory of evolution of life at the molecular level (cf. his contribution to Volume 17 of this series). Another important example has been provided by Blumenfeld's book on problems of biological physics (Vol. 7 of this series). There it was proposed to treat biological molecules as machines which, in a certain sense, work through "macros copic" degrees of freedom."
For four decades, information theory has been viewed almost exclusively as a theory based upon the Shannon measure of uncertainty and information, usually referred to as Shannon entropy. Since the publication of Shannon's seminal paper in 1948, the theory has grown extremely rapidly and has been applied with varied success in almost all areas of human endeavor. At this time, the Shannon information theory is a well established and developed body of knowledge. Among its most significant recent contributions have been the use of the complementary principles of minimum and maximum entropy in dealing with a variety of fundamental systems problems such as predic tive systems modelling, pattern recognition, image reconstruction, and the like. Since its inception in 1948, the Shannon theory has been viewed as a restricted information theory. It has often been argued that the theory is capable of dealing only with syntactic aspects of information, but not with its semantic and pragmatic aspects. This restriction was considered a v~rtue by some experts and a vice by others. More recently, however, various arguments have been made that the theory can be appropriately modified to account for semantic aspects of in formation as well. Some of the most convincing arguments in this regard are in cluded in Fred Dretske's Know/edge & Flow of Information (The M.LT. Press, Cambridge, Mass., 1981) and in this book by Guy lumarie.
This book contains the invited papers of an international symposium on Synergetics which was held at ZIF (Center for interdisciplinary research) at Bielefeld. Fed. Rep. of Germany. Sept. 24. -29 . * 1979. In keeping with our previous meetings. this one was truly interdisciplinary. Synergetic systems are those that can produce macroscopic spatial. temporal or functional structures in a self-organized way. I think that these proceedings draw a rather coherent picture of the present status of Synergetics, emphasizing this time theoretical aspects, although the proceedings contain also important con tributions from the experimental side. Synergetics has ties to many quite different disciplines as is clearly mirrored by the following articles. Out of the many ties I pick here only one example which is alluded to in the title of this book. Indeed, there is an important branch of mathematics called dynamic systems theory for which the problems of Synergetics might become an eldorado. While, undoubtedly, a good deal of dynamic systems had been motivated by mechanics, such as celestial and fluid dynamics, theory Synergetics provides us with a wealth of related problems of quite different fields, e. g. , lasers or chemical reaction processes. In order to become adequately applicable, in quite a number of realistic cases dynamic systems theory must be developed further. This is equally true for a number of other approaches.
This book integrates the theories of complex self-organizing systems with the rich body of discourse and literature developed in what might be called social theory of cities and urbanism . It uses techniques from dynamical complexity and synergetics to successfully tackle open social science questions.
|
You may like...
|