0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.): Hartmut Yersin Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Hardcover, 2001 ed.)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R8,686 Discovery Miles 86 860 Ships in 12 - 17 working days

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the... Transition Metal and Rare Earth Compounds - Excited States, Transitions, Interactions I (Paperback, Softcover reprint of the original 1st ed. 2001)
Hartmut Yersin; Contributions by K. L. Bray, M. Glasbeek, H. Kunkely, a. Vogler
R5,406 Discovery Miles 54 060 Out of stock

For a long time, the properties of transition metal and rare earth compounds have fascinated chemists and physicists from a scientific view-point, and more recently also their enormous potential as new materials has been explored. Applications in different fields have already been realized or are under c- rent investigation, for example, new laser materials, IR to visible upconversion systems, compounds for photolithographic processes, systems involving pho- redox processes for solar energy conversion, new photovoltaic devices, chemical sensors, biosensors, electroluminescent devices (OLEDs) for flat panel display systems, supramolecular devices with wide-range definable photophysical properties, materials for energy harvesting, optical information and storage systems, etc. Metal complexes are also highly important in biology and me- cine. Most of the applications mentioned are directly related to the properties of the electronic ground state and the lower-lying excited states. Metal complexes with organic ligands or organometallic compounds exhibit outstanding features as compared to purely organic molecules. For instance, metal compounds can often be prepared and applied in different oxidation states. Furthermore, various types of low-lying electronic excitations can be induced by a suitable choice of ligands, for example, such as metal-centered transitions (MC, e. g. d-d* tran- tion), ligand-centered (LC, e. g. n-n*), metal-to-ligand-charge transfer (MLCT, e. g. d-7r*), intra-ligand-charge-transfer (ILCT) transitions, etc. In particular, the orbitals involved in the resulting lowest excited states determine the photoph- ical and photochemical properties and thus the specific use of the compoun

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
JCB Chelsea Steel Toe Safety Boot…
R1,419 Discovery Miles 14 190
Too Much And Never Enough - How My…
Mary L. Trump Hardcover R925 Discovery Miles 9 250
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
High Waist Leggings (Black)
R169 Discovery Miles 1 690
Multi-Functional Bamboo Standing Laptop…
 (1)
R995 R399 Discovery Miles 3 990
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Cotton Wool (100g)
R32 Discovery Miles 320
JBL T110 In-Ear Headphones (White)
R229 R205 Discovery Miles 2 050
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Cadac Pizza Stone (33cm)
 (18)
R398 Discovery Miles 3 980

 

Partners