![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book brings new smart farming methodologies to the forefront, sparked by pervasive applications with automated farming technology. New indigenous expertise on smart agricultural technologies is presented along with conceptual prototypes showing how the Internet of Things, cloud computing, machine learning, deep learning, precision farming, crop management systems, etc., will be used in large-scale production in the future. The necessity of available welfare systems for farmers’ well-being is also discussed in the book. It draws the conclusion that there is a greater need and demand today for smart farming methodologies driven by technology than ever before.
Master's Thesis from the year 2011 in the subject Engineering - Computer Engineering, grade: 8.84, Manav Rachna International University, course: Master of Technology (M.Tech), language: English, comment: Best Thesis award and two publications, abstract: This dissertation presents an introductory knowledge to computational neuroscience and major emphasize on the branch of computational neuroscience called Spiking Neural Networks (SNNs). SNNs are also called the third generation neural networks. It has become now a major field of Soft Computing. In this we talk about the temporal characteristics' of neuron and studied the dynamics of it. We have presented SNNs architecture with fuzzy reasoning capability. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train frequencies and behave in a similar manner as fuzzy membership functions. The network of SNNs consists of three layers that is input, hidden and output layer. The topology of this network is based on Radial basis Network, which can be regarded as universal approximators. The input layer receives the input in the form of frequency which produces the spikes through linear encoding. There is another method of encoding called Poisson encoding; this encoding is used where the data is large. The hidden layer use Receptive Field (RF) to process the input and thus it is frequency selective. The output layer is only responsible for learning. The learning is based on local learning. The XOR classification problem is used to test the capabilities of the network. There is a problem of continuous updating of weight arises. This issue of weight is resolved by using STDP window and fuzzy reasoning. The dissertation demonstrates how it is possible to obtain fuzzy reasoning capability from biological models of spiking neurons. The fuzzy spiking neural network implements fuzzy rules by configuration of receptive fields, antecedent conjunction with
The iconic modern Indian painter Sayed Haider Raza did a set of paintings in 2013 by way of his tribute to Mahatma Gandhi. This volume is an attempt to put together these works in both artistic and historical perspective. Raza almost musically, certainly rhythmically, creates a Gandhi saptak through this set of works exploring the conceptual universe that the Mahatma created.With 7 paintings and 11 photographs, this volume brings together two extraordinary men, both artists in their ways, bound by an internal and external quest for peace.
|
![]() ![]() You may like...
Sapiens - A Brief History Of Humankind
Yuval Noah Harari
Paperback
![]()
|