![]() |
![]() |
Your cart is empty |
||
Showing 1 - 17 of 17 matches in All Departments
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory from Newton, Leibniz, Euler, and Hamilton to limit cycles and strange attractors. In a second chapter a modern treatment of Runge-Kutta and extrapolation methods is given. Also included are continuous methods for dense output, parallel Runge-Kutta methods, special methods for Hamiltonian systems, second order differential equations and delay equations. The third chapter begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. Many applications from physics, chemistry, biology, and astronomy together with computer programs and numerical comparisons are presented. This new edition has been rewritten, errors have been eliminated and new material has been included. The book will be immensely useful to graduate students and researchers in numerical analysis and scientific computing, and to scientists in the fields mentioned above.
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods.
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems (differential equations with constraints). The book is divided into four chapters. The beginning of each chapter is of introductory nature, followed by practical applications, the discussion of numerical results, theoretical investigations on the order and accuracy, linear and nonlinear stability, convergence and asymptotic expansions. Stiff and differential-algebraic problems arise everywhere in scientific computations (e.g., in physics, chemistry, biology, control engineering, electrical network analysis, mechanical systems). Many applications as well as computer programs are presented.
First-year calculus presented roughly in the order in which it first was discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations, while the establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, and researchers alike.
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.
This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.
The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
In many scientific or engineering applications, where ordinary differen tial equation (OOE), partial differential equation (POE), or integral equation (IE) models are involved, numerical simulation is in common use for prediction, monitoring, or control purposes. In many cases, however, successful simulation of a process must be preceded by the solution of the so-called inverse problem, which is usually more complex: given meas ured data and an associated theoretical model, determine unknown para meters in that model (or unknown functions to be parametrized) in such a way that some measure of the "discrepancy" between data and model is minimal. The present volume deals with the numerical treatment of such inverse probelms in fields of application like chemistry (Chap. 2,3,4, 7,9), molecular biology (Chap. 22), physics (Chap. 8,11,20), geophysics (Chap. 10,19), astronomy (Chap. 5), reservoir simulation (Chap. 15,16), elctrocardiology (Chap. 14), computer tomography (Chap. 21), and control system design (Chap. 12,13). In the actual computational solution of inverse problems in these fields, the following typical difficulties arise: (1) The evaluation of the sen sitivity coefficients for the model. may be rather time and storage con suming. Nevertheless these coefficients are needed (a) to ensure (local) uniqueness of the solution, (b) to estimate the accuracy of the obtained approximation of the solution, (c) to speed up the iterative solution of nonlinear problems. (2) Often the inverse problems are ill-posed. To cope with this fact in the presence of noisy or incomplete data or inev itable discretization errors, regularization techniques are necessary."
With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Ito-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH
Written by leading experts in an emerging field, this book offers a unique view of the theory of stochastic partial differential equations, with lectures on the stationary KPZ equation, fully nonlinear SPDEs, and random data wave equations. This subject has recently attracted a great deal of attention, partly as a consequence of Martin Hairer's contributions and in particular his creation of a theory of regularity structures for SPDEs, for which he was awarded the Fields Medal in 2014. The text comprises three lectures covering: the theory of stochastic Hamilton-Jacobi equations, one of the most intriguing and rich new chapters of this subject; singular SPDEs, which are at the cutting edge of innovation in the field following the breakthroughs of regularity structures and related theories, with the KPZ equation as a central example; and the study of dispersive equations with random initial conditions, which gives new insights into classical problems and at the same time provides a surprising parallel to the theory of singular SPDEs, viewed from many different perspectives. These notes are aimed at graduate students and researchers who want to familiarize themselves with this new field, which lies at the interface between analysis and probability.
This volume addresses some of the research areas in the general
field of stability studies for differential equations, with
emphasis on issues of concern for numerical studies.
This book covers numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. It presents a theory of symplectic and symmetric methods, which include various specially designed integrators, as well as discusses their construction and practical merits. The long-time behavior of the numerical solutions is studied using a backward error analysis combined with KAM theory.
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY
Diese Einfuhrung in die Analysis orientiert sich an der historischen Entwicklung: Die ersten zwei Kapitel schlagen den Bogen von historischen Berechnungsmethoden zu unendlichen Reihen, zur Differential- und Integralrechnung und zu Differentialgleichungen. Die Etablierung einer mathematisch stringenten Denkhaltung im 19. Jahrhundert fur ein und mehrere Variablen ist Thema der darauffolgenden Kapitel. Viele Beispiele, Berechnungen und Bilder machen den Band zu einem Lesevergnugen fur Studierende, fur Lehrer und fur Wissenschaftler.
The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different specialists in highly oscillatory research, from diverse areas of mathematics and applications, had been brought together for a single intellectual agenda. This ground-breaking volume consists of eight review papers by leading experts in subject areas of active research, with an emphasis on computation: numerical Hamiltonian problems, highly oscillatory quadrature, rapid approximation of functions, high frequency wave propagation, numerical homogenization, discretization of the wave equation, high frequency scattering and the solution of elliptic boundary value problems.
Presenter l'analyse de base en suivant grosso modo l'ordre suivant laquelle elle a ete decouverte, voici le fil conducteur de cet ouvrage. Complete par un grand nombre de dessins, d'exemples et de contre-exemples, cet ouvrage est redige avec un veritable souci de pedagogie. Il est truffe de remarques historiques et de commentaires explicitant la motivation profonde des developpements exposes.
Diplomarbeit aus dem Jahr 2012 im Fachbereich BWL - Personal und Organisation, Note: 1,7, Technische Universitat Munchen, Sprache: Deutsch, Abstract: Der zunehmende War for Talent" erschwert es vor allem KMU, ihren Personalbedarf mit qualifizierten Arbeitskraften zu decken. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Erfolgsdeterminanten einer Facebook Karriereseite identifiziert und auf KMU ubertragen. Ziel ist es, diesen einen professionellen Auftritt zu ermoglichen und deren grossenbedingten Attraktivitatsmerkmale im Rahmen von Social Media Recruiting mittels Facebook herauszustellen. Im Rahmen einer angebotszentrierten Inhaltsanalyse werden aus den 203, zum Zeitpunkt der Untersuchung bekannten, deutschsprachigen Facebook Karriere-Pages mittels quantitativer Kriterien sowie unter Einbeziehung bereits vorhandener Rankings, die 30 erfolgreichsten Auftritte ermittelt. Diese werden anhand eines Kategoriensystems ausgewertet. Insgesamt untersucht die Arbeit in den vier Hauptkategorien Auffindbarkeit, Design und Usability, Informationsgehalt sowie Interaktion 38 qualitative und 173 quantitative Kriterien. Bei der Auswertung und Interpretation der Ergebnisse konnen 49 Erfolgsdeterminanten in 14 Unterkategorien eruiert werden. In Form von Handlungsempfehlungen werden diese auf die spezifischen Besonderheiten von mittleren Unternehmen als auch kleinen Unternehmen ubertragen. Especially for SMEs the growing War for Talent" makes it more and more difficult to meet their staff requirements with qualified workers. The present study identifies the determinants of a successful Facebook career page and derives recommendations for SMEs with the purpose of emphasizing the attractiveness of size-related features considering social media recruiting via Facebook. The supply-centred content analysis embraces the 30 most successful Facebook career pages which are identified out of the 203 Facebook Career Pages in German language existing at the time of the study. T
|
![]() ![]() You may like...
|