|
Showing 1 - 2 of
2 matches in All Departments
Thisbookisintendedformolecularbiologistswhoperformquantitativeanalysesondata
emanatingfromtheir?eldandforthestatisticianswhoworkwithmolecularbiologists
andotherbiomedicalresearchers.
Therearemanyexcellenttextbooksthatprovidefun-
mentalcomponentsforstatisticaltrainingcurricula.
Therearealsomany"byexpertsfor
experts"booksinstatisticsandmolecularbiologywhichrequirein-depthknowledgein
bothsubjectstobetakenfulladvantageof.
Sofar,nobookinstatisticshasbeenpublished
thatprovidesthebasicprinciplesofproperstatisticalanalysesandprogressestoamore
advancedstatisticsinresponsetorapidlydevelopingtechnologiesandmethodologiesin
the?eldofmolecularbiology.
Respondingtothissituation,ourbookaimsatbridgingthegapbetweenthesetwo
extremes.
Molecularbiologistswillbene?tfromtheprogressivestyleofthebookwhere
basicstatisticalmethodsareintroducedandgraduallyelevatedtoanintermediatelevel.
Similarly,statisticianswillbene?tfromlearningthevariousbiologicaldatageneratedfrom
the?eldofmolecularbiology,thetypesofquestionsofinteresttomolecularbiologists,
andthestatisticalapproachestoanalyzingthedata.
Thestatisticalconceptsandmethods
relevanttostudiesinmolecularbiologyarepresentedinasimpleandpracticalmanner.
Speci?cally,thebookcoversbasicandintermediatestatisticsthatareusefulforclassical
and molecular biology settings and advanced statistical techniques
that can be used to
helpsolveproblemscommonlyencounteredinmodernmolecularbiologystudies,such
assupervisedandunsupervisedlearning,hiddenMarkovmodels,manipulationandan-
ysisofdatafromhigh-throughputmicroarrayandproteomicplatform,andsynthesisof
these evidences. A tutorial-type format is used to maximize
learning in some chapters.
Advicefromjournaleditorsonpeer-reviewedpublicationandsomeusefulinformationon
softwareimplementationarealsoprovided.
Thisbookisrecommendedforuseassupplementarymaterialbothinsideandoutside
classroomsorasaself-learningguideforstudents,scientists,andresearcherswhodealwith
numericdatainmolecularbiologyandrelated?elds.
Thosewhostartasbeginners,but
desiretobeatanintermediatelevel,will?ndthisbookespeciallyusefulintheirlearning
pathway.
WewanttothankJohnWalker(serieseditor),PatrickMarton,DavidCasey,andAnne
Meagher,(editorsatSpringerandHumana)andShanthyJaganathan(Integra-India).
The
followingpersonsprovidedusefuladviceandcommentsonselectionoftopics,referralto
expertsineachtopic,and/orchapterreviewsthatwetrulyappreciate:StephenLooney(a
former editor of this book), Stan Young, Dmitri Zaykin, Douglas
Hawkins, Wei Pan, Alexandre Almeida, John Ho, Rebecca Doerge, Paula
Trushin, Kevin Morgan, Jason
Osborne,PeterWestfall,JennyXiang,Ya-linChiu,YolandaBarron,HuiboShao,Alvin
Mushlin,andRonaldFanta. Drs.
Bang,Zhou,andMazumdarwerepartiallysupported
byClinicalTranslationalScienceCenter(CTSC)grant(UL1-RR024996).
HeejungBang vii Contents Preface...vii Contributors...xi
PARTIBASICSTATISTICS...1 1.
ExperimentalStatisticsforBiologicalSciences...3
HeejungBangandMarieDavidian 2.
NonparametricMethodsforMolecularBiology...105 KnutM.
WittkowskiandTingtingSong 3. BasicsofBayesianMethods...155 SujitK.
Ghosh 4. TheBayesiant-TestandBeyond ...179 MithatGonen PARTII
DESIGNSANDMETHODSFORMOLECULARBIOLOGY...201 5.
SampleSizeandPowerCalculationforMolecularBiologyStudies...203
Sin-HoJung 6.
DesignsforLinkageAnalysisandAssociationStudiesofComplexDiseases...219
YuehuaCui,GengxinLi,ShaoyuLi,andRonglingWu 7.
IntroductiontoEpigenomicsandEpigenome-WideAnalysis...243 MelissaJ.
FazzariandJohnM. Greally 8.
Exploration,Visualization,andPreprocessingofHigh-DimensionalData...267
ZhijinWuandZhiqiangWu PARTIII STATISTICALMETHODSFORMICROARRAYDATA
...285 9.
IntroductiontotheStatisticalAnalysisofTwo-ColorMicroarrayData...287
MartinaBremer,EdwardHimelblau,andAndreasMadlung 10.
BuildingNetworkswithMicroarrayData...315 BradleyM.
Broom,WareeRinsurongkawong,LajosPusztai, andKim-AnhDo PARTIV
ADVANCEDORSPECIALIZEDMETHODSFORMOLECULARBIOLOGY. . 345 11.
SupportVectorMachinesforClassi?cation:AStatisticalPortrait...347
YoonkyungLee 12. AnOverviewofClusteringAppliedtoMolecularBiology
...369 RebeccaNugentandMarinaMeila ix xContents 13.
HiddenMarkovModelandItsApplicationsinMotifFindings...405
JingWuandJunXie 14. DimensionReductionforHigh-DimensionalData...417
LexinLi 15.
IntroductiontotheDevelopmentandValidationofPredictiveBiomarker
ModelsfromHigh-ThroughputDataSets ...435 XutaoDengandFabienCampagne
16. Multi-geneExpression-basedStatisticalApproachestoPredicting
Patients'ClinicalOutcomesandResponses...471
FengCheng,Sang-HoonCho,andJaeK. Lee 17.
Two-StageTestingStrategiesforGenome-WideAssociationStudies
inFamily-BasedDesigns ...485 AmyMurphy,ScottT.
Weiss,andChristophLange 18. StatisticalMethodsforProteomics ...497
KlausJung PARTVMETA-ANALYSISFORHIGH-DIMENSIONALDATA ...509 19.
StatisticalMethodsforIntegratingMultipleTypesofHigh-ThroughputData.
. 511 YangXieandChulAhn 20.
ABayesianHierarchicalModelforHigh-DimensionalMeta-analysis...531
FeiLiu 21.
MethodsforCombiningMultipleGenome-WideLinkageStudies...541 TreciaA.
KippolaandStephanieA. Santorico PARTVI OTHERPRACTICALINFORMATION
...561 22.
ImprovedReportingofStatisticalDesignandAnalysis:Guidelines,
Education,andEditorialPolicies...5 63
MadhuMazumdar,SampritBanerjee,andHeatherL. VanEpps 23.
StataCompanion...599 JenniferSousaBrennan SubjectIndex...627
Contributors CHULAHN* Division of Biostatistics, Department of
Clinical Sciences, The Harold C.
Part I: Basic Statistics 1. Experimental Statistics for Biological
Sciences Heejung Bang and Marie Davidian 2. Nonparametric Methods
in Molecular Biology Knut M. Wittkowski and Tingting Song 3. Basics
of Bayesian Methods Sujit K. Ghosh 4. The Bayesian t-Test and
Beyond Mithat Goenen Part II: Designs and Methods for Molecular
Biology 5. Sample Size and Power Calculation for Molecular Biology
Studies Sin-Ho Jung 6. Designs for Linkage Analysis and Association
Studies of Complex Diseases Yuehua Cui, Gengxin Li, Shaoyu Li, and
Rongling Wu 7. Introduction to Epigenomics and Epigenome-Wide
Analysis Melissa J. Fazzari and John M. Greally 8. Exploration,
Visualization, and Preprocessing of High Dimensional Data Zhijin Wu
and Zhiqiang Wu Part III: Statistical Methods for Microarray Data
9. Introduction to the Statistical Analysis of Two-Color Microarray
Data Martina Bremer, Edward Himelblau, and Andreas Madlung 10.
Building Networks with Microarray Data Bradley M. Broom, Waree
Rinsurongkawong, Lajos Pusztai, and Kim-Anh Do Part IV: Advanced or
Specialized Methods for Molecular Biology 11. Support Vector
Machines for Classification: A Statistical Portrait Yoonkyung Lee
12. An Overview of Clustering Applied to Molecular Biology Rebecca
Nugent and Marina Meila 13. Hidden Markov Model and Its
Applications in Motif Findings Jing Wu and Jun Xie 14. Dimension
Reduction for High Dimensional Data Lexin Li 15. Introduction to
the Development and Validation of Predictive Biomarker Models from
High-Throughput Datasets Xutao Deng and Fabien Campagne 16.
Multi-GeneExpression-Based Statistical Approaches to Predicting
Patients' Clinical Outcomes and Responses Feng Cheng, Sang-Hoon
Cho, and Jae K. Lee 17. Two-Stage Testing Strategies for
Genome-Wide Association Studies in Family-Based Designs Amy Murphy,
Scott T. Weiss, and Christoph Lange 18. Statistical Methods for
Proteomics Klaus Jung Part V: Meta-Analysis for High-Dimensional
Data 19. Statistical Methods for Integrating Multiple Types of
High-Throughput Data Yang Xie and Chul Ahn 20. A Bayesian
Hierarchical Model for High-Dimensional Meta Analysis Fei Liu 21.
Methods for Combining Multiple Genome-Wide Linkage Studies Trecia
A. Kippola and Stephanie A. Santorico Part VI: Other Practical
Information 22. Improved Reporting of Statistical Design and
Analysis: Guidelines, Education, and Editorial Policies Madhu
Mazumdar, Samprit Banerjee, and Heather L. Van Epps 23. Stata
Companion Jennifer Sousa Brennan
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
The Creator
John David Washington, Gemma Chan, …
DVD
R312
Discovery Miles 3 120
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
|